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Abstract: The sensitivity of a geodetic network is defined as its capacity to detect and 
measure movements and deformations in the area covered by the network. This paper 
attempts to study the effects of datum definition on the sensitivity of geodetic networks. 
Particular attention is paid to the geometry of the datum points and to its effect on the 
sensitivity of the network. Principles from continuum mechanics are used to analyze the 
datum definitions required for a sensitive network, and it is shown how the sensitivity of a 
monitoring network is strongly influenced by the geometry of the network points. This paper 
presents a new perspective and describes relevant parameters that enable defining and 
quantifying the influence of the datum on the sensitivity of geodetic networks. Following an 
introduction of the concept of geodetic networks’  sensitivity and a development of theoretical 
tools, the paper presents results of numerical experiments carried using a schematic horizontal 
GPS network. These results indicate that the sensitivity of a geodetic network depends on the 
geometrical distribution of the network points and on the chosen set of points that define the 
datum of the network. 

1. Introduction 

The primary goal of deformation analysis according to our approach is the determination of 
velocities of points located on a deformed area. The velocities are unique parameters capable 
of representing the deformation phenomenon [10]. The velocities model the reality of 
deformation as a four dimensional phenomenon.  

Estimation of the velocities parameters can be done directly from the geodetic measurements 
or indirectly by the two-steps analysis approach [3] [9]. In both methods the raw 
measurements are used to estimate the coordinates of the network points, for a reference 
epoch 0t  and the velocity of the points, x� . 

The observation equations for solving 0x  and x�  are rank deficient due to the lack of datum. 

There is a need to define a reference coordinate systems for 0x  and x� , and thus the datum 

defect is double. The datum defect is corrected by adding a corresponding number of 
constraints to the unknown parameters. Since the position axis of the network points is 
perpendicular to the time axis, there is no dependence between the datum definition of the 
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coordinates of the network points ( 0x ) and the velocity of the points ( x� ). Consequently, 

changes in the datum definition, when defining 0x , do not affect the solution of x� . The 

constraints that apply to the network points could be different from those applied to the 
velocities, hence it is not necessary for the two reference systems to coincide. As we are 
interested mainly in the velocities, our concern remains with the selection and definition of a 
meaningful reference system for x� . 

A unique solution of the datum problem can be achieved by adding a minimum number of 
constraints that equals the number of the datum defect. The defect of a 3D velocities network 
is three when the definition of origin is missing and it can grow to seven when the definition 
of the rotations and scale are missing as well. Geodetic measurements contain part of the 
datum definition, therefore the exact size of the network defect is dependent on the type of the 
existing measurements. GPS measurements can be assumed to have an orientation and scale, 
therefore the size of the datum defect in a GPS network is three, since the definition of origin 
is missing. For each monitoring campaign we may use the datum parameters that are 
contained in the GPS measurements for estimating the coordinates of the network points, but 
not for estimating the velocities in the deformation analysis. Velocities are estimated based on 
a time series of monitoring campaigns. Fluctuations in the GPS orbits could affect the 
orientation and scale between monitoring campaigns [2]. Therefore, when calculating 
velocities we should not obtain the datum definition from the GPS measurements but rather 
assume a datum defect of seven parameters, d 7� . 

2. Datum Definition and S-transformation 

According to Wolf [11] we can transform one solution, x̂ , pertaining to a certain datum into 
another , x̂ , pertaining to another datum using a similarity transformation. Let I be the identity 
matrix and G a similarity transformation matrix, also known as Helmert's transformation 
matrix. Such a transformation, also known as the S-transformation, is described by: 

ˆ ˆ ˆ[ ]x = I GE x Jx� �  (1) 

while T 1 T( )E G G G�� � . x̂  is the unique solution that yields Tˆ ˆ minx x � . Note that J is 

idempotent: 2J J�  and TJ J� . 

The cofactor matrix for the solution x̂  is called Q. In accordance with the law of error 
propagation, the cofactor matrix Q  of the transformed solution x̂  is 

TQ JQJ� . (2) 

The solution x̂  and its cofactor matrix Q  are based on a datum defined by all the points in 

the network. It is the optimal datum as the trace of the cofactor matrix Q  is minimal [6]. 

However, the application of a datum definition that relies on all the points in the network is 
not sensible.   

Let xP  be a diagonal matrix with 1 for points that enter the datum definition and 0 for all 

others. When searching for a solution with minˆˆ �xPx x
T  we get: 

T -1 T
x xJ I - G(G P G) G P� . (3) 

The projector J is no longer a symmetric matrix since T 1 T
x x( )G G P G G P�  is not symmetric.  
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A conventional datum for the velocities x�  is determined by identifying a subset of network 
points that are congruent, thus the relative positions of those points are invariant in time. The 
datum is defined by minimizing the following quadratic form: 

T
XP minx x �� � . (4) 

The S-transformation is a very convenient tool for defining a subset of congruent network 
points. When dealing with geodetic networks the Helmert transformation matrix G usually 
contains columns as the number of the network datum defect. In 3-D networks the first three 
columns pertain to the translations, the additional three columns define the rotations and the 
last column defines the scale of the network, totaling seven columns. In the case of spatial 
deformation monitoring networks, when translations, rotations, scales and obliquities have to 
be defined in the area covered by the network, we should extend the G matrix due to the 
additional need to define the scale factor for the three axes and the angles between them, a 
total of twelve columns, d 12�  [8]. The following section shows how the extended Helmert 
transformation matrix has the same form as the matrix used to decompose the velocity field 
into the rigid motion and homogenous strain parameters. 

3. The Sensitivity Criteria 

The sensitivity of a network is defined as its capacity to detect and measure movements and 
deformations in the area covered by the network.  

We examine the sensitivity of the network using the statistical test of hypothesis. The null 
hypothesis 

0:H0 �x�  

can be tested against the alternative hypothesis 

0:H1 �x� . 

If the null hypothesis is accepted there is no movement of points in the network. The cofactor 

matrix 
x̂

Q
�
 has rank r and f degrees of freedom in the estimation of x̂�  and the a posteriori 

variance factor is 2
0�̂ . The test statistic including all velocities of the network points is: 

T

x̂
r,f2

0

ˆ ˆ
t ~ F

ˆr

x Q x�
�

�
�

� �
. (5) 

For three-dimensional networks with u points r 3u d� � , where d can equal 7 or 12, 
depending on the Helmert transformation used (regular or extended), and for two-dimensional 
networks r 2u d� � , where d can equal 4 or 6. 

If r,f,�t F�  the null hypothesis is rejected, where �  is the level of significance. This means 

that at least one point has moved significantly. The sensitivity of the network is increased as t 
increases. The test statistic t can increase when the velocities ( x̂� ) increase or when the 
velocities accuracies increase (when the standard deviations are smaller). 

The design of a monitoring network based on the sensitivity criteria has been presented by 
Even-Tzur [5].  

4. The Sensitivity of a Group of Points 

Principles from continuum mechanics can be used to analyze the datum definition required 
for a sensitive network [1] [7]. In a three-dimensional analysis of the point velocity field we 
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compute the three parameters of the velocity of the network’s barycenter in the reference 
system ( x y z)� � � , the three rotation parameters x y z( r r r )  and the deformation rate 

tensor. The deformation tensor is composed of the scale factors of the three axes 
-1 -1 -1
xx yy zz(d d d )  and the angles between them yz xz xy(d d d ) , for a total of 12 parameters: 

                             translation       rotation                scale                    obliquity 
T -1 -1 -1

x y z xx yy zz yz xz xyg = x y z r r r d d d d d d	 
� �� � � . (6) 

We introduce a matrix B with the following composition: 

1 1 1 1 1

1 1 1 1 1
T

1 1 1 1 1

u u u u u

1 0 0 0 z -y x 0 0 0 z y

0 1 0 -z 0 x 0 y 0 z 0 x

0 0 1 y -x 0 0 0 z y x 0 .

. . . . . . . . . . . .

0 0 1 y -x 0 0 0 z y x 0

B

	 


 �

 �

 ��

 �

 �

 �� �

 (7) 

The coordinates ix , iy  and iz  of point i (i 1,2,...u)�  are given in a Cartesian system that is 

parallel to the reference system and with an origin at the network’s barycenter. It should be 
noted that the matrix B has the same form as the matrix G (the extended Helmert matrix).  

The velocity field of a congruent group of points can be partitioned into a linear model TB g  
and a residual vector v: 

Tx B g v� �� . (8) 

The velocity vector x�  has a covariance matrix xQ � . According to Papo [7] the vector g and its 

covariance matrix gQ  are given as 

1 T 1 1
x x

1 T 1
( )

( ) .g x

g BQ B BQ x
Q BQ B

� � �

� �
�
�

� �

�

�
 (9) 

For a 3-D network at least four non-coplanar points are required in a group and for a 2-D 
network three non-collinear points are required to define all the elements of vector g. 

In a four-dimensional network, the property that distinguishes the datum points from the rest 
of the network is the fact that their relative velocities are smaller than a certain significance 
level. The matrix gQ  can serve as a tool to examine the sensitivity of a group of points 

representing a block in the network. 

By using the linear part of the model for the velocity field (as presented in equation 8) we can 
define the test statistic (5) for a congruent group of points as 

T 1 T

x̂
r,f2

0

ˆ ˆ( )
t ~ F

ˆr

g BQ B g�

�
�
� . (10) 

For a group of points ĝ  can be regarded as invariant, r is a constant, and 2
0�̂  is the variance 

factor. Hence the product 1 T
xBQ B�
�  defines the sensitivity of the group of points. The larger 

the trace of 1 T
xBQ B�
�  is, the more sensitive the network is. In other words, the more accurate g 

is the more sensitive the network is. 
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The accuracy of g depends on the accuracy of the velocity field, which for GPS networks is 
independent of the geometric distribution of the network points. However, the matrix B is 
obviously dependent on the network geometry.  

In order to determine the best ability for monitoring individual components of vector g we 
shall examine the optimal geometrical distribution of points according to our sensitivity 
criteria, using a two-dimensional network for the sake of simplicity. The interested reader can 
find that for three-dimensional networks the inferences are almost similar. The inferences 
presented below were obtained from experiments carried and based on an examination of the 
characteristics of matrix B. 

Translation - A single point can define the linear velocity of a certain area covered by the 
network. So the ability to determine the velocity of the barycenter of one of the network 
blocks is not influenced by the geometrical distribution of points. 

Rotation - Two points are needed to determine the rotation of a block. The more distant these 
points are, the better the rotation can be detected, as seen in Figure 1 (a). 

Scale change - Two points, A and B for example, with A BX X�  or A BY Y� , can not 

distinguish a difference in the X or Y scale. We aim for a coordinate difference between 
points that will be as large as possible in both components, as seen in Figure 1 (b). 

Variation of angle between axes - Three points are needed to detect the angle between the two 
axes in a two-dimensional network. The optimal distribution of points is when the distance in 
both coordinate components is as large as possible, as seen in Figure 1 (c). 

   

(a) Rotation (b) Scale (c) Angle between axes 

Figure 1: The best ability for monitoring individual components of vector g. 

 

Matrix B must be a full row rank, otherwise vector g is undefined. Generally there are more 
points than needed for a unique evaluation of each component of g. This allows us to examine 
the results and to evaluate their error estimation. 

It should be noted that in a three-dimensional network the difference in the vertical 
components is always small, around a few hundred meters. Therefore we can expect low 
sensitivity in this direction. 

There are three types of measurements that provide a reasonable level of accuracy for 
monitoring deformation, GPS vectors, distances and height differences. For these types of 
measurements the estimation of the measurement variances depends on the distance between 
the points, as the variance increases when the distance increases. Therefore, the wish for a 
long distance between points for increasing the network sensitivity should be limited. The 
conclusion as to the best distribution is based on the assumption that the covariance matrix 

Y 

X X 

Y 

X 

Y�
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remains the same when the distances increase. However, our analysis should give us an idea 
of what we should aspire for. 

5. Datum Definition and its Influence on Sensitivity 

Let us investigate the influence of datum definition on the sensitivity of the network, and 
explore the relationship between the datum points’  geometry and the sensitivity of the 
network points. 

Let two groups of points be located in two different blocks separated by a fault line. 
Measurements are taken between the points. For simplicity, we assume that the geometrical 
distribution of each group is identical relative to the fault line. The points represent the blocks 
and the measurements allow determining the relative motion and deformation between the 
blocks. Let us also assume that each group of points can serve as a datum, assuming that the 
relative position of each group of points is invariant in time. Let us investigate which group of 
points should define the datum when the objective is achieving a sensitive network. 
Arbitrarily we can define one group of points as a reference block (datum). The second block 
contains the object points (referred to as the object block). Movements and deformation of the 
object block are defined in relation to the reference block. In this situation the sensitivity of 
the network can be increased if the geometrical distribution of the object points will be wide, 
as described in the previous section.  

If the object points can serve as datum points, we can transform their velocities, using the S-
transformation, and use them as the reference points. If translation is considered between the 
reference block and the object block, matrix J (see equation 3) is independent of the 
geometrical distribution of the datum points as matrix G is independent of the points’  
position. Therefore, the sensitivity of the network is not dependent on the reference block 
chosen, and each block can serve as a datum where the network sensitivity is not influenced 
by the geometrical distribution of points. 

If rotation is considered, the situation is more complex. Let us assume that the object block 
rotates around the barycenter of the object points relative to the reference block. The rotation 
can be expressed as velocities according to equation (8). We use the S-transformation 
between the object block and the reference block. Now the velocities of the object points that 
were used as reference points are used to evaluate the vector of rigid motion and homogenous 
strain parameters (g) of the object block, using equation (9). Now the new object block 
(previously referred to as the reference block) rotates in the opposite direction to the original 
rotation but at the same rate, and has a translation as well. Due to the S-transformation the 
rotation of the original reference block is done around the barycenter of the original object 
points. Consequently, the velocities are greater and the test statistic t (equation 5) increases. 
Therefore, as long as the barycenter of the reference block is close to the rotation axis, the 
sensitivity of the object points (as their barycenter is distant from the rotation axis) increases. 
In this situation the sensitivity of the network increases as the distance between the object 
points increases. 

When the object block is deformed due to a scale change or obliquity of the axes and we use 
the S-transformation and turn it into the reference block, the new object block becomes 
deformed in an opposite rate and also has a translation. The velocities of the new object block 
are greater and the test statistic t increases. As long as points on the deformed block are used 
to define the datum, the sensitivity of the object points increases. In this situation the 
sensitivity of the network increases when the coordinate difference between points is as large 
as possible in both components, and the distance in both coordinate components is as large as 
possible. 
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The conclusions regarding the influence of datum definition on network sensitivity are based 
on the assumption that the covariance matrix of the velocities remains the same when datum 
transformation is implemented between blocks. In homogenous monitoring deformation 
network this assumption is generally valid. 

Thus, it becomes clear that the geometric distribution of the datum points does not 
dramatically affect the sensitivity of the network. The geometric distribution of the object 
points should be further considered, but, as strange as it may seem, it is important to establish 
the datum based on points that represent the deformed block. 

The datum should provide a solid basis for defining movements of points. Wide geometrical 
distribution of the datum points is better than a narrow geometrical distribution in order to 
achieve a better accuracy of the points in the network [8]. 

6. An Example 

A small two-dimensional schematic GPS network containing 8 points for monitoring crustal 
deformation is shown in Figure 2. Let us assume that due to tectonic activity block II moves 
relative to block I with a rate of 2 millimeters a year in the north direction and rotates around 
its barycenter with a rate of 61 10��  radian a year. Let block I be the reference block and block 
II the object block. The postulated vector g, based on the tectonic activity at the monitoring 
region, is: 

T 6
mm/ yr rad/ yr2 0 1 10 0 0 0g �	 
� �� � 

The linear part of the velocity field of the points on block II can be computed according to 
equation (8). Then the 16 by 1 velocity vector of all network points is: 

T
mm/ yr

block I Block II

[0 0 ... 0 7 10 7 10 3 10 3 10]x � � � � ��
������������������������

 

All vectors were measured between the network points. The variance (in meters) of a vector 
of length ij�  meters between points i and j is given by ij0.003 0.5ppm

i
� � � �� � , and a 

correlation of 10% is assumed between the two vector components. Zero correlation is 
assumed between any two different vectors. The weight matrix was produced using a variance 
of a unit weight equaling 1, 2

0 1� � . Let the time interval between two epochs of observations 

be one year, yrt 1� � . The cofactor matrix of the velocity vector x�  is  

1 2x x
x 2( t)

Q Q
Q

�
�

�
� . (11) 

When points located on block I define the datum, the numerator of equation (5) is equal to 
T

x 45.6x Q x� ��
� � . 

The S-transformation is implemented on the velocities and their cofactor matrix to change the 
reference block into block II. The velocity vector of all network points is now: 

T
mm/ yr

block I Block II

[ 27 10 27 10 17 10 17 10 0 0 ... 0]x � � � � � � ��
��������������������������

. 

A decomposition of the velocity field using equation (9) into the rigid motion and 
homogenous strain parameters shows that block I moves with a rate of -22 millimeters a year 
in the north direction relative to block II, and rotates with a rate of 61 10�� �  radian a year. The 
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numerator of equation (5) when block II defines the datum is equal to T
x 2315.4x Q x� ��

� � . A 

dramatic improvement is obtained. Evidently, we should choose points located on block II to 
define the datum. 

The above results are totally unexpected. Since we are dealing with a symmetric network, it 
seems logical to expect each set of four points will have the same ability to define the datum 
resulting in a similar level of sensitivity. The capacity of the network to detect movements 
was estimated to be independent to datum definition, but the example shows the advantage of 
one configuration (block II as datum) over the other. From an accuracy and reliability point of 
view each set of points defines the same network. In the example, the accuracy of the network 
points and their reliability does not change when switching between the two datum sets.  

 

Figure 2: A two-dimensional GPS control network for monitoring crustal deformation. 

7. Summary and Conclusions 

The sensitivity of a geodetic network is defined as its capacity to detect and measure 
movements and deformations in the area covered by the network. The network points 
represent different areas (blocks) and the measurements allow the determination of the 
relative motion and deformation between the blocks. The datum of the network should 
provide a solid basis for defining the velocities of the points. The velocities can be viewed as 
a model of the deformation phenomenon. To define the characteristics of a block we should 
distribute points homogeneously to cover the entire area. The network sensitivity depends on 
the geometrical distribution of the network points. With the same number of points, different 
distributions lead to different levels of sensitivity. Several rules are proposed in order to 
define the distribution of points in a way that could improve the sensitivity of the network. 

The geometric distribution of the datum points does not dramatically affect the sensitivity of 
the network. The geometric distribution of the object points should be further considered, but, 
as strange it may seem, it is important to establish the datum based on the points that define 
the deformed block. 
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