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BAYESIAN ESTIMATION IN DAM MONITORING NETWORKS  
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Abstract: A Bayesian estimator with informative prior distributions (a multi-normal and an 
inverted gamma distribution), adequate to displacement estimation at dam displacement mo-
nitoring networks, is presented. The hyper-parameters of the prior distributions are obtained 
by Bayesian empirical methods with non-informative meta-priors. The performances of the 
Bayes estimator and the classical generalized lest squares estimator are compared using two 
measurements of the horizontal monitoring network of a concrete gravity dam: the Penha 
Garcia dam (Portugal). In order to test the robustness of the two estimators, a gross error is 
added to one of the measured horizontal directions: the Bayes estimator proves to be signifi-
cantly more robust than the classic maximum likelihood estimator. 

1. INTRODUCTION 

Engineering networks established to monitor displacements of large dams, with behaviour 
analysis and safety control purpose, are usually tied to a local reference frame and are mea-
sured repeatedly over the dam’s life span, which may last for many decades. The repeated 
observation of the networks provides the information necessary to “estimate” the hyper-para-
meters of the prior probability density functions (PDF) of the model’s parameters, according 
to the so called parametric empirical Bayes (PEB) methods (Barnett, 1975; Carlin and Louis, 
2000).    

The stochastic models with different levels of distributions and parameters are called hierar-
chical Bayesian models (Press, 2003). The sampling distribution and the sampling PDF para-
meters occupy the first level. The prior and the posterior distributions and its hyper-pa-
rameters occupy the second level. The meta-prior and meta-posterior distributions and its me-
ta-parameters occupy the third level. The empirical Bayesian inference on hyper-parameters, 
carried out at the second and third levels, precedes the Bayesian inference on sampling 
parameters, carried out at the first and second levels.  

According to the Bayesian methodology, if the meta-priors are non-informative, such as im-
proper uniform priors (Barnett 1975; Carlin and Louis, 2000), the maximization of the meta-
posterior is equivalent to the maximization of the likelihood function. That is the option of 
this work: to use non-informative meta-priors. The choice of the priors (multi-normal and in-
verted gamma) is justified (Box and Tiao, 1992; Press, 2003) by mathematical convenience 
(the posteriors have multivariate t and inverted chi-square distributions) and agrees with the 
common sense. The estimation of the hyper-parameters is trivial, for the multi-normal prior, 
but not so for the inverted gamma prior (Casaca, 2007).    
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2. THE HIERARCHICAL MODEL     

2.1. The Sampling Space 

The first measurement of the network is to be carried out in a convenient epoch (t0), when the 
dam reservoir is empty and the dam’s internal temperature is extreme (low or high), so that the 
future estimated displacements may be easily compared with the dam’s structural expected beha-
viour, allowing a rough quality control of the observations.  

The functional model of a temporal engineering network that has been measured at the epochs 
(t0, t1,..., tk) is the linear relation: 

)k,,1i(),1,m(Y)1,n(XA ii Κ==  (1) 

where: i) A is the network’s first order design matrix; ii) X i is the vector of the displacements 
of the network’s vertices (object, ancillary and reference points), between the epoch t0 and the 
epoch ti; iii) Y i is the vector of the changes of the observable variables (horizontal angles, dis-
tances, GPS baselines, etc.), between the epoch t0 and the epoch ti.   

The matrix A, which results from the Taylorization of the non-linear relations between displa-
cements of the network’s vertices and the changes of the observable variables, according to 
the method of the variation of co-ordinates, may be computed with roughly approximate co-or-
dinates of the vertices, before the fieldwork, and may be kept constant over time.  

The operational mathematical model results from setting up a stochastic model to the vector 
of the changes Yi, in order to deal with the effect of the observation errors, which arise from 
several sources such as: faulty calibration of the measurement instruments, inadequate operative 
methods, adverse atmospheric conditions, operator’s skill, etc.  

A simple stochastic model consists of regarding the vector of changes Yi as a sample of a multi-
normal random vector, with mean vector E(Yi) = µi and variance matrix V(Yi) = ωi Σ, where ωi 
is an unknown positive scalar parameter and Σ(m, m) is the second order design matrix of the 
network: a known symmetric positive definite (spd) matrix.   

The mean vector µi is the unknown vector of the changes of the observables that is related to the 
unknown vector of displacements θi by the linear relation Aθi = µi.  

The scalar parameter (ωi) is a quality parameter that represents an improvement (if ωi < 1) or a 
degradation (if ωi > 1) of the network’s second order design matrix (Σ), which is set up in the 
planning of the network and is used in the computation of error ellipses, etc. If the ith measure-
ment is carried out according to the plan, the quality parameter (ωi) is expected to be one. In 
practice, due to changes in the measurement instruments, atmospheric conditions, operators, etc., 
the quality parameter (ωi) varies randomly along the time.   

2.2. The Parameter Space 

The repeated measurement of the network along time (sometimes many decades) covers a wide 
range of actions on the dam (temperatures and water levels), with structural responses (displace-
ments, etc.) that behave according to a visco-elastic model.  

The distribution of the vectors of displacements (θ1,..., θk) over time may be modeled by a mul-
ti-normal distribution N(µθ, Σθ), where the variance matrix (Σθ) represents the elastic response 
and the mean vector (µθ) represents a time effect. The multi-normal distribution N(µθ, Σθ) 
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may be regarded as the mother population of the network’s displacement vector parameter 
(θ). The correspondent PDF will be the prior PDF of the vector parameter (θ) and the mean 
vector µθ and the variance matrix Σθ will be two hyper-parameters of the hierarchical 
Bayesian model.  

The parameters (ω1,..., ωk), that characterize the quality of the measurements, are independent 
of the actions on the dam and the correspondent displacements (θ). Their random distribution 
may be conveniently (Press, 2003) modeled with an inverted gamma distribution, which de-
pends of a shape parameter (α) and a scale parameter (β) (Casaca, 2007).     

The parameter space of the Bayes hierarchical model is defined by two prior PDF and four 
hyper-parameters: i) The multi-normal prior PDF of the displacements vectors:  
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with the hyper-parameters (µθ, Σθ); ii) The inverted gamma prior PDF of the quality parame-
ters:  
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with the hyper-parameters (α, β).  

 

3. BAYES ESTIMATORS VERSUS CLASSICAL ESTIMATORS  

For a given vector of observables Y*, the Bayes estimates of the parameters (θ, ω) must mini-
mize the posterior PDF of the parameters:  

)(h)(h*)Y|,(L*)Y|,(g ωθωθωθ ωθ∝  (4) 

which is proportional (∝) to the product of the likelihood L(θ, ω|Y*) and the joint prior PDF 
of the parameters h(θ, ω) = hθ(θ) hω(ω), since θ and ω are supposed to be stochastically inde-
pendent.   

3.1. Non Informative Priors 

If the priors hθ and hω are non-informative priors, such as uniform distributions, the Bayes so-
lutions coincide with the classical maximum likelihood (ML) solutions. In this case, the vec-
tor parameter that maximizes (4) is the best linear unbiased estimator (BLUE):  
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The scale parameter that maximizes the posterior PDF is also the ML solution: 
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which must be computed with the BLUE (5). In practice, as the ML solution (6) is biased, a 
more popular, and unbiased, solution is:    
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3.2. Informative Priors 

If the priors hθ and hω are informative, the Bayes solutions do not coincide any more with the 
classical maximum likelihood solutions. If the prior PDF hθ belongs to a multi-normal family 
and the prior PDF hω belongs to an inverted gamma family, the Bayes solutions may become 
quite different from the classical ML solutions.  

In this case (Box and Tiao, 1992; Casaca, 2007), the vector parameter that maximizes the pos-
terior PDF (4) is:  
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and the quality parameter that maximizes the posterior PDF (4) is:  
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which should be replaced by the unbiased alternative solution:    
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The Bayes solutions (θB and ωB) are mutually dependent and must be determined simulta-
neously. One possible computational strategy is based on an iterative procedure of the kind: i) 
Start with an unit scale parameter (ωB0 = 1), compute the vector parameter (θB0) with (8) and 
replace it at (10) to compute a new scale parameter (ωB1); ii) Repeat the procedure until both 
estimates (θBk and ωBk) become stable.    

 

4. THE PARAMETRIC EMPIRICAL APPROACH      

After the choice of the priors hθ and hω, it is necessary to choose their hyper-parameters. Whe-
never there is data from previous experiments similar to the current one, the parametric empi-
rical approach is recommendable (Barnett, 1973). Two situations may arise: i) There is prior 
information on the distribution of the hyper-parameters (meta-priors and meta-parameters); ii) 
There is no prior information on the distribution of the hyper-parameters (the meta-priors are 
uniform). In the second hypothesis the Bayesian approach coincides with the classical ma-
ximum likelihood approach.  

4.1. The Displacement Vectors 

Let (X1,..., Xk) to be stochastically independent estimates of the vector parameters (θ1,..., θk), 
which are supposed to belong to a multi-normal family N(µθ, Σθ). If there is no prior infor-
mation on the distribution of the hyper-parameters (µθ, Σθ), the maximum likelihood solutions 
of the problem (Morrison, 1990) are the empirical mean vector: 
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and the empirical variance matrix:  
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The maximum likelihood estimator (12) of the variance matrix (Σθ) is biased. However, a mi-
nor modification of (12) provides an unbiased estimator (Morrison, 1990): 
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4.2. The Quality Parameters     

Let (s1,..., sk) to be stochastically independent estimates of the quality parameters (ω1,..., ωk), 
which are supposed to belong to an inverted gamma family with hyper-parameters (α, β). If 
there is no prior information on the distribution of the hyper-parameters, the maximum likeli-
hood solutions of the problem (Casaca, 2007) are given by the resolution, in order to the 
hyper-parameter (α), of the equation:  
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where ψ(α) is the digamma function (Casaca, 2007). The shape hyper-parameter (α) may be 
then inserted in: 
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to solve for the scale hyper-parameter (β).  

 

5. THE PENHA GARCIA DAM NETWORK  

The Penha Garcia dam is a concrete gravity dam, with a maximum height of 25m and a crest 
length of 112m, on the river Ponsul, 60km to the Northeast of the city of Castelo Branco in 
Portugal. Its geodetic surveying system consists of a precision geometric leveling line instal-
led on the dam’s crest and a rudimentary triangulation network, with two station points, on 
the downstream banks, and several object points on the dam (Figure 1). According to a prior 
geotechnical evaluation, the station points (PD and PE) are supposed to be stable with time 
and, therefore, materialize the network’s local datum.  

From each station point, taking the other station point as origin, two independent arcs of hori-
zontal directions are measured, with precision electronic theodolites. Between 1981 and 2007, 
twenty three measurements of the network were carried out. The 23rd measurement was pre-
served, to be processed with the Bayes estimators built with priors derived from the previous 
22 measurements.  

Taking the initial measurement as a reference, twenty one vectors of changes (Yi) were com-
puted with the BLUE:  
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The 21 estimates of the displacement vectors (X1,…, X21) were used to compute, with the re-
lations (11) and (12), the hyper-parameters (mθ, Sθ) of the prior multi-normal distribution of 
the displacement vectors. The components of the resulting mean vector (mθ) are plotted on the 
object points (6D, 5D, 4D, 4E, 3E, 2E) at the Figure 1. The dispersion ellipses, for the 0.95 
probability level, derived from the variance matrix Sθ of the prior PDF hθ, were computed and 
plotted with the center on the object points (larger ellipses of the Figure 1). The error ellipses, 
for the 0.95 probability level, derived from the variance matrix Σ (second order design matrix 
of the network), were also computed and plotted with the center on the object points (minor 
ellipses of the Figure 1).   

 

PE

PD

6D

5D
4D 4E 3E

2E

Scale of the ellipses

(mm)0 10

 
Figure 1 – Penha Garcia dam network: station points (PD and PE) and object points with 

dispersion and error ellipses. 
 

The analysis of the Figure 1 shows that: i) The components of the hyper-parameter mθ lie wi-
thin the network’s error ellipses, meaning that, after a quarter of century of the dam’s opera-
tion, the time effect is not very significant; ii) The error ellipses lie within the dispersion ellip-
ses in a proper way, meaning that the network is adequate to measure the dam’s expected dis-
placements.  
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The 21 estimates of the quality parameter (s1,…, s21) presented at the Table 1, were used to 
compute, with the relations (14) and (15), the hyper-parameters (α = 3.60, β = 2.46) of the 
prior inverted gamma distribution of the quality parameters. 

 

Table 1 – Estimates (s) of the quality parameter (ω) 

year s year s year s year s year s year s year s 

1982 0.37 1985 1.43 1988 0.59 1991 1.00 1994 3.48 1998 0.91 2004 0.68 

1983 0.24 1986 1.20 1989 0.97 1992 1.96 1995 0.66 2002 0.63 2005 1.53 

1984 0.95 1987 0.60 1990 1.81 1993 0.35 1996 0.95 2003 0.71 2006 0.36 
 

 

6. CLASSICAL VERSUS BAYESIAN INFERENCE 

The dam’s network 23rd measurement – carried out in June of 2007 – was processed with the 
classical maximum likelihood (ML) estimators (5) and (7) and with the Bayes estimators (8) 
and (10), with the priors hθ (2) and hω (3) with the empirical hyper-parameters (mθ, Sθ, α, β), 
derived from the previous 22 measurements. The Table 2 presents the ML solutions (dx, dy) 
and the Bayes solutions (dx, dy), which are very likely. The Figure 2 presents these two solu-
tions (displacements) with the same symbol: a white circle.      

 

Table 2 – Maximum likelihood (ML) and Bayes solutions. 

ML Bayes 
Point dx 

(mm) 
dy 

(mm) 
dx* 

(mm) 
dy* 

(mm) 
dx 

(mm) 
dy 

(mm) 
dx* 

(mm) 
dy* 

(mm) 

2E – 0.4 + 3.4 – 0.4 + 3.4 – 0.2 + 3.5 – 0.1 + 3.0 

3E – 0.5 + 4.4 – 0.5 + 4.4 – 0.4 + 4.4 – 0.1 + 3.8 

4E – 0.9 + 4.3 – 2.8 + 1.8 – 0.8 + 4.3 – 1.1 + 3.6 

4D – 0.3 + 3.5 – 0.3 + 3.5 – 0.2 + 3.5 – 0.1 + 3.2 

5D – 1.5 + 2.9 – 1.5 + 2.9 – 1.4 + 3.0 – 1.2 + 2.5 

6D – 2.2 + 2.0 – 2.2 + 2.0 – 2.2 + 2.1 – 1.7 + 1.3 
 

To compare the performances of the classical (ML) and the Bayes estimators in face of conta-
minated observations, a gross error of 5 mgon was introduced in one of the two directions 
measured from the station PE to the object point 4E (Figure 1). The 23rd measurement conta-
minated with the gross error was processed with the classical maximum likelihood (ML) esti-
mators (5) and (7) and with the Bayes estimators (8) and (10) with the same priors hθ (2) and 
hω (3), with the same empirical hyper-parameters (mθ, Sθ, α, β). The Table 2 presents the ML 
solutions (dx*, dy*) and the Bayes solutions (dx*, dy*) that resulted from the adjustment of 
the contaminated observables vector.  
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Figure 2 – Penha Garcia dam network: maximum likelihood (ML) and Bayes (B) solu-
tions. The asterisk indicates the ML and B solutions in the contaminated case.  

 

The analysis of the Table 2 shows that the two ML solutions (for the uncontaminated and the 
contaminated observables), with the exception of the point 4E, are similar. They are represen-
ted in the Figure 2 by the white circle symbol, except the 4E ML solution that is represented 
with a black and white circle symbol. The Bayes solutions for the contaminated observables – 
represented with the black circle symbol at the Figure 2 – are similar to the ML and Bayes 
solutions for the uncontaminated observables. The Bayes solution of the object point 4E is not 
affected by the contamination.     

The analysis of the residuals of the two estimates is enlightening: i) In the case of the maxi-
mum likelihood estimate, the 5mgon contamination error originates two ambiguous symme-
trical residuals of +2.8mgon and – 2.8mgon, respectively, in the two measured directions from 
the station PE to the point 4E; ii) In the case of the Bayes estimate, the 5mgon contamination 
error originates an unequivocal large residual of +4.8mgon, in the contaminated measurement.  

One last note: the hyper-parameter (mθ) estimated for the multi-normal prior, is not significant 
(according to the Figure 1, its components lie inside the network’s error ellipses). If (µθ) is re-
placed by the null vector in the relation (8) the resulting Bayes estimates are scarcely different.   

  

7. CONCLUSIONS 

The Bayes estimator with PEB priors has a performance which is rather attractive, when com-
pared to the usual maximum likelihood estimator: in normal circumstances, the results are 
very similar, but in face of contamination with gross errors, the Bayes estimator proves to be 
more robust than the maximum likelihood estimator.   

In the case of networks with PEB priors consolidated by experience, it appears to be a good 
strategy to use simultaneously the maximum likelihood and the Bayes estimators. The simila-
rity of the two solutions indicates a normal situation, but any discrepancy between the two so-
lutions indicates that the observations do not agree with the previous experience and recom-
mends further analysis of the available data.  
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