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BAYESIAN ESTIMATION IN DAM MONITORING NETWORKS
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Abstract: A Bayesian estimator with informative prior distitipns (a multi-normal and an
inverted gamma distribution), adequate to displagnestimation at dam displacement mo-
nitoring networks, is presented. The hyper-pararaaté the prior distributions are obtained
by Bayesian empirical methods with non-informatieta-priors. The performances of the
Bayes estimator and the classical generalizedstpstres estimator are compared using two
measurements of the horizontal monitoring netwdrla @oncrete gravity dam: the Penha
Garcia dam (Portugal). In order to test the robesdnof the two estimators, a gross error is
added to one of the measured horizontal directittressBayes estimator proves to be signifi-
cantly more robust than the classic maximum lileith estimator.

1. INTRODUCTION

Engineering networks established to monitor disgiaents of large dams, with behaviour

analysis and safety control purpose, are usualy td a local reference frame and are mea-
sured repeatedly over the dam'’s life span, whicly taat for many decades. The repeated
observation of the networks provides the informati@cessary to “estimate” the hyper-para-
meters of the prior probability density functio®D(F) of the model's parameters, according
to the so called parametric empirical Bayes (PEB)hmds (Barnett, 1975; Carlin and Louis,

2000).

The stochastic models with different levels of wlsttions and parameters are called hierar-
chical Bayesian models (Press, 2003). The samdistgbution and the sampling PDF para-
meters occupy the first level. The prior and thestpnor distributions and its hyper-pa-

rameters occupy the second level. The meta-pridmaeta-posterior distributions and its me-
ta-parameters occupy the third level. The empifga@yesian inference on hyper-parameters,
carried out at the second and third levels, prexzdtle Bayesian inference on sampling
parameters, carried out at the first and secoreldev

According to the Bayesian methodology, if the matars are non-informative, such as im-
proper uniform priors (Barnett 1975; Carlin and lspi2000), the maximization of the meta-
posterior is equivalent to the maximization of tlkelihood function. That is the option of
this work: to use non-informative meta-priors. Td®ice of the priors (multi-normal and in-
verted gamma) is justified (Box and Tiao, 1992;sBre2003) by mathematical convenience
(the posteriors have multivariate t and invertedscjuare distributions) and agrees with the
common sense. The estimation of the hyper-paramétdrivial, for the multi-normal prior,
but not so for the inverted gamma prior (Casac@y20
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2. THE HIERARCHICAL MODEL
2.1. The Sampling Space

The first measurement of the network is to be edraut in a convenient epoch)(twhen the
dam reservoir is empty and the dam’s internal teaipee is extreme (low or high), so that the
future estimated displacements may be easily cardpaith the dam’s structural expected beha-
viour, allowing a rough quality control of the obsstions.

The functional model of a temporal engineering mekithat has been measured at the epochs
(to, ta,..., k) is the linear relation:

AX;i () =Yi(mD, (i=1K k) (1)
where: i) A is the network’s first order design nrgtii) X; is the vector of the displacements
of the network’s vertices (object, ancillary anéerence points), between the epaghrd the
epoch t iii) Y is the vector of the changes of the observablebkes (horizontal angles, dis-
tances, GPS baselines, etc.), between the epacil the epoch.t

The matrix A, which results from the Taylorizatiohthe non-linear relations between displa-
cements of the network’s vertices and the chanf@elseoobservable variables, according to
the method of the variation of co-ordinates, mag@aputed with roughly approximate co-or-
dinates of the vertices, before the fieldwork, amay be kept constant over time.

The operational mathematical model results frortirgpup a stochastic model to the vector
of the changesYin order to deal with the effect of the obsematerrors, which arise from
several sources such as: faulty calibration ohteasurement instruments, inadequate operative
methods, adverse atmospheric conditions, operatkiilsetc.

A simple stochastic model consists of regardingséator of changesi¥as a sample of a multi-
normal random vector, with mean vector B W and variance matrix V(Y = w Z, wherew

is an unknown positive scalar parameter a(rd, m) is the second order design matrix of the
network: a known symmetric positive definite (sputrix.

The mean vectqy; is the unknown vector of the changes of the oled®eg that is related to the
unknown vector of displacemertisby the linear relation & = .

The scalar parameten] is a quality parameter that represents an impnevi (if«y < 1) or a
degradation (ity > 1) of the network’s second order design maftx (hich is set up in the
planning of the network and is used in the comjariabf error ellipses, etc. If th& measure-
ment is carried out according to the plan, the iyugbrameter ) is expected to be one. In
practice, due to changes in the measurement instrsratmospheric conditions, operators, etc.,
the quality parametetwy) varies randomly along the time.

2.2. The Parameter Space

The repeated measurement of the network along(8ormaetimes many decades) covers a wide
range of actions on the dam (temperatures and Veatels), with structural responses (displace-
ments, etc.) that behave according to a viscoielastdel.

The distribution of the vectors of displaceme#ts. (., 6x) over time may be modeled by a mul-
ti-normal distribution Nye, Z¢), where the variance matriXd) represents the elastic response
and the mean vectopd) represents a time effect. The multi-normal disttion N, )
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may be regarded as the mother population of thearkls displacement vector parameter
(6). The correspondent PDF will be the prior PDFh# vector parametef) and the mean
vector lg and the variance matriXg will be two hyper-parameters of the hierarchical
Bayesian model.

The parametersuy,..., ax), that characterize the quality of the measuremenre independent
of the actions on the dam and the correspondepladismentsf). Their random distribution
may be conveniently (Press, 2003) modeled withnaerted gamma distribution, which de-

pends of a shape paramet) &nd a scale paramet) (Casaca, 2007).

The parameter space of the Bayes hierarchical med#fined by two prior PDF and four
hyper-parameters: i) The multi-normal prior PDRIa# displacements vectors:

1 _
exp[—z(e—ue ) 216 g )] o

hg(€| Lg.2g) =
(2m)M det( g )

with the hyper-parametergy( Z¢); ii) The inverted gamma prior PDF of the qualigrame-
ters:

a
ha wla.ﬁ){%] w (@t exp[—gj 3)

with the hyper-parameters,(3).

3. BAYESESTIMATORS VERSUSCLASSICAL ESTIMATORS

For a given vector of observables Y*, the Bayesrestes of the paramete8, (v) must mini-
mize the posterior PDF of the parameters:

9(6,a|Y*) U L(8,«| Y*)hg(E)hy(w) 4

which is proportional(()) to the product of the likelihood @( w|Y*) and the joint prior PDF
of the parameters B(w) = hy(B) hy(w), sinced andw are supposed to be stochastically inde-
pendent.

3.1. Non Informative Priors

If the priors I3 and ky, are non-informative priors, such as uniform digttions, the Bayes so-
lutions coincide with the classical maximum likeldd (ML) solutions. In this case, the vec-
tor parameter that maximizes (4) is the best linedniased estimator (BLUE):

Oy = (AT s72a) AT s~ Ly« (5)
The scale parameter that maximizes the posteriériBRlso the ML solution:
1 _
wmL = (Y* ~AbuL ) =7Hv* -AbwL) (6)

which must be computed with the BLUE (5). In preetias the ML solution (6) is biased, a
more popular, and unbiased, solution is:
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1 _
wy :m(Y* -AGuL )TZ 1(Y* -AbG\L ) (7)
3.2. Informative Priors

If the priors i and h, are informative, the Bayes solutions do not caieany more with the
classical maximum likelihood solutions. If the prleBDF hy belongs to a multi-normal family
and the prior PDF hbelongs to an inverted gamma family, the Bayestgwols may become
quite different from the classical ML solutions.

In this case (Box and Tiao, 1992; Casaca, 200&)yéttor parameter that maximizes the pos-
terior PDF (4) is:

O = (wz AT st A+ s ) Wt AT sy v b ) (8)

and the quality parameter that maximizes the piosteDF (4) is:

2p T o1
=—(Y* -Af 2 (Y*-Ad
@B = gy Y TAG) ZT(YT -AdR) ©)
which should be replaced by the unbiased alteraamiution:
2 -
wp=——28 _(v*-Adg)" =7 (Y* -Ap) (10)

m-n+2(a+1)

The Bayes solution$9§ and ws) are mutually dependent and must be determinedlisim
neously. One possible computational strategy iedas an iterative procedure of the kind: i)
Start with an unit scale parameteg{ = 1), compute the vector paramet@sof with (8) and
replace it at (10) to compute a new scale paranfetg); ii) Repeat the procedure until both
estimatesfgx andwsx) become stable.

4. THE PARAMETRIC EMPIRICAL APPROACH

After the choice of the priorgtand h, it is necessary to choose their hyper-parameténg-
never there is data from previous experiments aimd the current one, the parametric empi-
rical approach is recommendable (Barnett, 1973) $ituations may arise: i) There is prior
information on the distribution of the hyper-parders (meta-priors and meta-parameters); ii)
There is no prior information on the distributiohtbe hyper-parameters (the meta-priors are
uniform). In the second hypothesis the Bayesiarragmh coincides with the classical ma-
ximum likelihood approach.

4.1. The Displacement Vectors

Let (Xy,..., X) to be stochastically independent estimates oféwtor parameter$y,..., 6y),
which are supposed to belong to a multi-normal kamie, ). If there is no prior infor-
mation on the distribution of the hyper-paramefggs Zy), the maximum likelihood solutions
of the problem (Morrison, 1990) are the empiricalam vector:

1Kk
mg =— > X (11)
ki=1
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and the empirical variance matrix:

Sp =2 30X ~mg)(X; ~mg)T
e—kEl( i —mg )(Xj —mg) (12)

The maximum likelihood estimator (12) of the vadamatrix Eg) is biased. However, a mi-
nor modification of (12) provides an unbiased eatwn (Morrison, 1990):

| 1(Xi‘m6)(xi‘m0)T (13)
|

M=

1
Sp=—
%" k-1

4.2. The Quality Parameters

Let (s,..., %) to be stochastically independent estimates ofjtiadity parametersu,..., ux),
which are supposed to belong to an inverted ganammalyf with hyper-parametersi( 3). If
there is no prior information on the distributiohtiee hyper-parameters, the maximum likeli-
hood solutions of the problem (Casaca, 2007) avengby the resolution, in order to the
hyper-parameter(, of the equation:

k 1 1Kk

wla)=In(a)=In| > — |=In(k)-—= 2 In(s;) (14)
i=1 S Ki=1

wherey(a) is the digamma function (Casaca, 2007). The shgper-parametem( may be

then inserted in:

K 1 -1
peka 3.1 (15)

i=1S
to solve for the scale hyper-paramef&) (

5. THE PENHA GARCIA DAM NETWORK

The Penha Garcia dam is a concrete gravity darh, avinaximum height of 25m and a crest
length of 112m, on the river Ponsul, 60km to thetNeast of the city of Castelo Branco in
Portugal. Its geodetic surveying system consisia pfecision geometric leveling line instal-
led on the dam’s crest and a rudimentary triangaiabetwork, with two station points, on
the downstream banks, and several object points@idam (Figure 1). According to a prior
geotechnical evaluation, the station points (PD BE{l are supposed to be stable with time
and, therefore, materialize the network’s locaudat

From each station point, taking the other statioimipas origin, two independent arcs of hori-
zontal directions are measured, with precisionteda theodolites. Between 1981 and 2007,
twenty three measurements of the network wereezhwit. The 28 measurement was pre-
served, to be processed with the Bayes estimatoltswith priors derived from the previous
22 measurements.

Taking the initial measurement as a reference, tyvene vectors of changes;j¥vere com-
puted with the BLUE:
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Xi =(AT A TAT =7y (i=1K 21) (16)
The 21 estimates of the displacement vectois. (X X2;) were used to compute, with the re-
lations (11) and (12), the hyper-parameters, (8) of the prior multi-normal distribution of
the displacement vectors. The components of thétieg mean vector (g) are plotted on the
object points (6D, 5D, 4D, 4E, 3E, 2E) at the Fegar The dispersion ellipses, for the 0.95
probability level, derived from the variance matgxof the prior PDF k were computed and
plotted with the center on the object points (lamgjépses of the Figure 1). The error ellipses,
for the 0.95 probability level, derived from therigace matrixz (second order design matrix
of the network), were also computed and plottedh hie center on the object points (minor
ellipses of the Figure 1).
5D 40 4E S
2E
6D % ‘

PD
A
Scale of the ellipses
PE
0 10
: (mm) | A

Figure 1 — Penha Garcia dam network: station pgiPilsand PE) and object points with
dispersion and error ellipses.

The analysis of the Figure 1 shows that: i) The ponents of the hyper-parameteg le wi-

thin the network’s error ellipses, meaning thateiaé quarter of century of the dam'’s opera-
tion, the time effect is not very significant; The error ellipses lie within the dispersion ellip-
ses in a proper way, meaning that the network ésjadte to measure the dam’s expected dis-
placements.
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The 21 estimates of the quality parametey. (s $1) presented at the Table 1, were used to
compute, with the relations (14) and (15), the mygerameterso = 3.60,3 = 2.46) of the
prior inverted gamma distribution of the qualityraaeters.

Table 1 — Estimates (s) of the quality parametr (

year S year S year S year S year S year S year S

1982 0.37 1985 1.43 1988 0.59 1991 1.00 1994 3.48081 0.91 2004 0.68
1983 0.24 1986 1.20 1989 0.97 1992 1.96 1995 0.6822 0.63 2005 1.53
1984 0.95 1987 0.60 1990 1.81 1993 0.35 1996 0.99032 0.71 2006 0.36

6. CLASSICAL VERSUSBAYESIAN INFERENCE

The dam’s network 23measurement — carried out in June of 2007 — wasepsed with the
classical maximum likelihood (ML) estimators (5)daY) and with the Bayes estimators (8)
and (10), with the priorsgh(2) and f (3) with the empirical hyper-parametersy(r§s, o, [3),
derived from the previous 22 measurements. TheeT2lgresents the ML solutions (dx, dy)
and the Bayes solutions (dx, dy), which are vetglli. The Figure 2 presents these two solu-
tions (displacements) with the same symbol: a wdirde.

Table 2 — Maximum likelihood (ML) and Bayes solun$o

ML Bayes
Point  dx dy dx*  dy* dx dy dx*  dy*
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
2 -04 +34 -04 +34 -02 +35 -01 +3.0
3E -05 +44 -05 +44 -04 +44 -01 +38
4E -09 +43 -28 +18 -08 +43 -11 +36
4 -03 +35 -03 +35 -02 +35 -01 +32
5D -15 +29 -15 +29 -14 +30 -12 +25
6D —-22 +20 -22 +20 -22 +21 -17 +13

To compare the performances of the classical (Mid) the Bayes estimators in face of conta-
minated observations, a gross error of 5 mgon waeduced in one of the two directions
measured from the station PE to the object poinfF&ure 1). The 23 measurement conta-
minated with the gross error was processed witltkhssical maximum likelihood (ML) esti-
mators (5) and (7) and with the Bayes estimatorsu(@ (10) with the same priorg () and

he, (3), with the same empirical hyper-parameterg @ o, ). The Table 2 presents the ML
solutions (dx*, dy*) and the Bayes solutions (d$;*) that resulted from the adjustment of
the contaminated observables vector.
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4  SE
5D 4D 2E
6D \

Displacements O-ML,B
0 (mm) 5 @®-B*
—— —— - @ -ML*

Figure 2 — Penha Garcia dam network: maximum ligeld (ML) and Bayes (B) solu-
tions. The asterisk indicates the ML and B solwionthe contaminated case.

The analysis of the Table 2 shows that the two Mlutsns (for the uncontaminated and the
contaminated observables), with the exception efpbint 4E, are similar. They are represen-
ted in the Figure 2 by the white circle symbol, epxicthe 4E ML solution that is represented
with a black and white circle symbol. The Bayesuiohs for the contaminated observables —
represented with the black circle symbol at theuFég2 — are similar to the ML and Bayes
solutions for the uncontaminated observables. TayeB solution of the object point 4E is not
affected by the contamination.

The analysis of the residuals of the two estimegesnlightening: i) In the case of the maxi-
mum likelihood estimate, the 5Smgon contaminatiaoreoriginates two ambiguous symme-
trical residuals of +2.8mgon and — 2.8mgon, respelgt in the two measured directions from
the station PE to the point 4E; ii) In the casehef Bayes estimate, the 5mgon contamination
error originates an unequivocal large residual4€8tngon, in the contaminated measurement.

One last note: the hyper-parameteg)(astimated for the multi-normal prior, is not sfgrant
(according to the Figure 1, its components liedaedhe network’s error ellipses). [ig is re-
placed by the null vector in the relation (8) teseulting Bayes estimates are scarcely different.

7. CONCLUSIONS

The Bayes estimator with PEB priors has a perfogeavhich is rather attractive, when com-
pared to the usual maximum likelihood estimatornarmal circumstances, the results are
very similar, but in face of contamination with gsoerrors, the Bayes estimator proves to be
more robust than the maximum likelihood estimator.

In the case of networks with PEB priors consolidaig experience, it appears to be a good
strategy to use simultaneously the maximum likelthand the Bayes estimators. The simila-
rity of the two solutions indicates a normal sitoaf but any discrepancy between the two so-
lutions indicates that the observations do not egvith the previous experience and recom-
mends further analysis of the available data.
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