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Abstract: The standard reference in uncertainty modelling is the “Guide to the Expression of 
Uncertainty in Measurement (GUM)”. GUM groups the occurring uncertain quantities into 
“Type A” and “Type B”. Uncertainties of “Type A” are determined with the classical 
statistical methods, while “Type B” is subject to other uncertainties like experience with and 
knowledge about an instrument. Both types of uncertainty can have random and systematic 
error components. Our study focuses on a critical comparison of Monte Carlo (MC) and 
Fuzzy techniques in the propagation process of the different uncertainties, especially those of 
“Type B”. Whereas MC techniques treat all uncertainties as having a random nature, the 
Fuzzy technique distinguishes between random and systematic errors. The random 
components are modelled in a stochastic framework, and the systematic uncertainties were 
treated with Fuzzy techniques. The applied procedure is outlined showing both the theory and 
a numerical example for the evaluation of uncertainties in an application for laserscanning. 

1. INTRODUCTION 

The “Guide to the Expression of Uncertainty in Measurement (GUM)” is the standard 
reference in uncertainty modelling in engineering and mathematical science, cf. (ISO, 1995). 
GUM groups the occurring uncertain quantities into “Type A” and “Type B”. Uncertainties of 
“Type A” are determined with the classical statistical methods, while “Type B” is subject to 
other uncertainties like experience with and knowledge about an instrument. Whereas the 
uncertainties of the uncertain quantities of “Type A” can be estimated based on the 
measurement itself, the estimated uncertainties of the uncertain quantities of “Type B” are 
based on expert knowledge, e.g., the technical knowledge about an instrumental error source. 
Both types of uncertainty can have random and systematic error components: 

• A random error ε  arises from non predictable variations of some influence factors 
under seemingly the same actual conditions (non reproducible effects), see, e.g., 
Bandemer (2006, pp. 63ff). 

• A systematic error δ  is due to non controllable effects during the measurement and 
the preprocessing steps of the measurement, it biases the output quantity y . 
Although systematic errors are unknown, they bias the measurement result in one 
direction (reproducible, but unknown effects).  
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GUM defines an output quantity y  as a function of input quantities z  (preprocessing steps): 

1 2( , ,..., ) ( )ny f z z z f= = z , (1) 

with n  the number of input quantities z , which can be a quantity (ISO 1995, chapter 4.1.3): 

• “…, whose values and uncertainties are directly determined in the current measure-
ment (original measurement).” 

• “…, whose values and uncertainties are brought into the measurement from external 
sources, like the values from a calibration for an instrument (influence factor).” 

Please note that in general the input quantities iz  may be a measurement result y  itself. In 

order to have a clear representation, only the case where iz  is a measurement or an influence 

factor is treated in this paper. The quantity iz  can be carrier of both, random and systematic 
errors. GUM proposes to treat both errors (random and systematic) in a stochastic framework 
and introduces variances to describe their uncertainties.  

Let us denote the function (...)f  from Eq. (1) as observation model and divide the influence 
quantities into three groups: additional information, sensor parameters, and model constants. 
Whereas the uncertainty of the original measurement is usually of “Type A”, the uncertainty 
of the influence factors can be of “Type A” or “Type B”. Fig. 1 shows the interaction between 
the measurement, the influence factors and the observation model. Systematic errors of the 
input quantities are meaningful by many reasons: 

• The model constants are only partially representative for the given situation (e. g., 
the model constants for the refraction index for distance measurements). 

• The number of additional information (measurements) may be too small to estimate 
reliable distributions for a random treatment.  

• Measurement results are affected by rounding errors 
• Other non-random errors of the output quantity occur due to neglected correction 

and reduction steps and for effects that cannot be modelled.  

The paper is organized as follows: First we will describe the general idea of Monte Carlo 
techniques to describe measurement uncertainties in the context of GUM; second a Fuzzy 
approach to handle these measurement uncertainties is introduced. Then both approaches are 
applied to laserscanning and the obtained results are critically compared to each other. The 
paper finishes with a discussion and an outlook for further research.  
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Figure 1 - Interaction between input quantities, the observation model and the output quantities 

2. UNCERTAINTY MODELLING WITH MONTE CARLO TECHNIQUES 

In Monte Carlo (MC) techniques, both, the random and the systematic components of the 
uncertainty are treated as having a random nature. Please note that not the systematic 
component itself is modelled as random, it is the knowledge about the systematic component 
for which a probability distribution is introduced (Koch, 2007). 

The GUM suggested in some cases to select the probability distribution function (pdf) of the 
input quantities as rectangular, triangular, and trapezoidal (ISO, 1995). In these cases, it is 
hard/impossible to obtain the estimate of the uncertainty for the output quantity in a closed 
mathematical form. An alternative to modelling and propagating uncertainties is propagating 
distributions by MC simulations of the observation model from Eq. (1): 

1 2( , ,..., ) ( )nY f Z Z Z f= = Z . (2) 

Here Y  represents a random output quantity and 1 2, ,..., nZ Z Z  are the n random inputs. 

2.1. Monte Carlo Approach to Evaluate Uncertainty 

The MC techniques are of great importance for uncertainty evaluation. With a set of generated 
samples the distribution function for the value of the output quantity Y in (2) will be nume-
rically approximated. MC approaches to estimate the uncertainty include the following steps: 

- A set of random samples, which have the size n, is generated from the (pdf) for each 
random input quantity 1 2, ,..., nZ Z Z . The sampling procedure is repeated M  times for 

every input quantity.   

- The output quantities Y  will be then calculated by: 

( ) ( ) ( ) ( )
1 2( , ,..., ) ( )(i) i i i i

ny f z z z f= = z , (3) 

 with the 1....i M=  generated samples of Y , we obtain an estimate of the pdf for Y .  

- Particularly relevant estimates of any statistical quantities can be calculated: 

1) The expectation of the output quantity:  
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2) The estimate of the variance of the output quantity (Alkhatib, 2007): 

2 ( ) ( )
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i i T
y

i

f E f f E f
M =

σ = − −∑ z z z z   (5) 

3) The confidence interval , [ , ]conf MCy y y=  of the estimate of the output quantity with 

the significance level of γ . To compute the confidence interval by MC simulation, 
one has to order the independent samples y  from the smallest to largest, an 
approximate 100 (1- 2 )%⋅ γ  for the random variable Y  is given by (Buckland, 
1983):  

, [ , ],conf MC j ky y y y y= = =  where ( 1)j M= + γ  and ( 1)(1 )k M= + − γ .  (6) 

2.2. Sampling from Probability Distribution Function 

Any MC simulation requires random numbers. Random numbers are generated on a computer 
by means of deterministic procedures. In particular, rectangular distributed random numbers 
are generated, which may then in turn be transformed into random numbers of random 
variables having other distributions, for instance, into numbers of a normally distributed 
random variable (Gentel, 2003).  

To demonstrate the modelling of uncertainty with a MC simulation in section 4, the gene-
ration algorithms of random numbers from rectangular, triangular and normal distribution will 
be shortly described. For more details, see, e.g., Koch (2007): 

- Generation of rectangular-distributed random numbers: 

1) Generate 1 2, ,..., nx x x  realisations of random variables that have the rectangular 
distribution on the unit interval [0, 1]. 

2) Then ( )y a a a x− + −= + − ⋅ is rectangular-distributed on the interval [ , ]a a− + . Here 

,a a− +  are the distribution parameter. 

- Generation of triangular-distributed random numbers: The symmetric triangular 
distribution with pdf is of the form: 

( )
2

2

    for  
| ,       with    ( ) / 2

    for   

x a
a x a a

ap x a a a a a
a x

a a x a
a

−
− −

− + + −
+

− +

− ≤ ≤ += = + − + ≤ ≤


                   (7) 

The inverse cumulative density function (cdf) approach is used to generate random 
numbers 1 2, ,..., ny y y  from the triangular distribution, cf., e.g., (Gentel, 2003, pp. 102): 

1.) Generate the random value y  for the random variable from rectangle distribution 
(0,1)Y U: .  

2.) Set y equal to the distribution function, that is: ( )F x h= .  
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3.) Invert the distribution function and isolate x , that is: 1( )x F h−=  

4.) Calculate 1( )i ix F h−=  from inverse CDF: 

( )1
( )( )               if    ( )( )  

(1 )( )( )       else  

h a a a a a h a a a a a a
F h

a h a a a a

+ − − − + − − −−

+ + − +

 − − + − − + <= 
− − − −

  (8) 

- Generation of correlated normally-distributed random numbers: It is well known that 
the multinormal distribution is fully characterized by its expected value µ  and its 
variance-covariance matrix Σ . To generate random numbers from the multinormal 
distribution, the following steps have to be performed, see, e.g., (Gentle 2003, p. 197): 

1.)  Compute the Cholesky decomposition, that is: .= T
Σ R R  

2.)  Generate a realisation of an independent and normal random vector ~ ( , ).N 0 IZ  

3.)  Compute the transformed T= RY Z . 
4.)  Compute transformed realisations according to= µ +Y Z . 
5.)  The vector Y  is ~ ( )N µ,ΣY distributed. 

3. A FUZZY APPROACH TO UNCERTAINTY MODELLING  

In this section, a Fuzzy approach to uncertainty modelling in the context of GUM is 
introduced. Fuzzy theory (Zadeh 1965) has proven to be an appropriate solution for the 
description of uncertainties. Recently, many procedures have been introduced in different 
engineering applications, cf., e. g., (Ferson et al., 2002; Möller and Beer, 2004), incl. 
discussions about combined approaches in Fuzzy theory, interval mathematics and probability 
theory (Ferson et al., 2002). 

In the here presented approach we distinguish between random and systematic errors in the 
propagation process of the uncertainties of the input quantities z  to the output quantity y . 
Whereas the random part is treated with the law of propagation of covariances or with the MC 
approach, systematic errors are propagated within a sensitivity analysis (see section 3.2). Both 
types of uncertainty are modelled in a comprehensive way, using fuzzy intervals (see 
section 3.1). This procedure is in full accordance with the recommendations in the GUM; the 
difference is in the treatment of the systematic errors, for which no variances are introduced. 

3.1. Uncertainty Modelling using Fuzzy Intervals 

The random and systematic components of the uncertainties are characterized with a special 
case of Fuzzy theory, so called Fuzzy Randomness (Möller and Beer 2004; Viertl 1996). Each 

uncertain quantity iz  is exclusively modelled in terms of fuzzy intervals. A fuzzy interval A% 

is uniquely defined by its membership function ( )
A

m x%  over the set ¡  of real numbers with a 

membership degree between 0 and 1: 

{ }: ( , ( ))= ∈%
% ¡

A
A x m x x       with    [ ]: 0,1→% ¡

A
m               (9) 

The membership function of a fuzzy interval can be described by its left (L) and right (R) 
reference function (see also Fig. 2):  
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with mx  denoting the midpoint, r  its radius, and ,l rc c  the spread parameters of the 

monotonously decreasing reference functions (convex fuzzy intervals).  

 

Figure 2 - Fuzzy interval and its α -cut 

Fuzzy intervals serve now as basic quantities; their midpoints mx  are considered in the 
following as random variables and their spread describes the range of the systematic errors. 
The construction of the membership function is based on expert knowledge or knowledge 
about an instrument. In contrast to the MC approach, the membership function of a fuzzy 
interval cannot be interpreted in a probabilistic meaning and therefore the propagation of the 
systematic uncertainties has to be modified (see section 3.2). In the fuzzy case, we model the 
systematic component of the uncertainty itself and not the knowledge about the systematic 

component like it is in the MC approach. The cutα −  with α [0,1]∈  of a fuzzy interval A% is 
defined by: 

{ }: ( )
A

A x X m xα α= ∈ ≥%
% .  (11) 

Each cutα −  represents in case of monotonously decreasing reference functions a classical 

interval. The lower ,min,A%α  and the upper bound ,max
%Aα  of an cutα − and its radius ,rA%α  are:  

( ),minA min Aα α=% % ,  ( ),maxA max Aα α=% %  and ( ), ,max ,min / 2rA A A= −% % %
α α α   (12a,b,c) 

The integral over all α -cuts equals the membership function: 
1

0

( ) ( )
A A

m x m x d
α

α= ∫% %   (13) 

3.2. Uncertainty Propagation within a Sensitivity Analysis 

The propagation process of the random and systematic errors is separated in two parts. 
Whereas the random components are treated with the law of variance propagation (GUM, 
chapter 5.2) or within a MC approach (see section 2.1), the propagation of the systematic 
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errors is a range-of-values search problem. The propagation process leads to a fuzzy interval 
for the output quantity ( )yy m x→ % . The approximate midpoint of the fuzzy interval for the 

output quantity my  is: 

1 2( , ,..., ) ( )
m m mm n my f z z z f= = z . (14) 

The computation of the membership function for the measurement results is based on the 
α-cuts αz%  of the input quantities, within an optimization problem of the following target 

function, see, e.g., Kutterer and Neumann (2007): 

,min ,max
,min [ , ]

min ( )
i i iz z z

y f
∈

=
% %

%
α α

α z       and        
,min ,max

,max
[ , ]

max ( )
i i iz z z

y f
∈

=
% %

%
α α

α z .  (15) 

The membership function of the output quantity is constructed based on a sufficient number 
of α-cuts from Eq. (15): 

1

0

( ) ( )y ym x m x d
α

α= ∫% %      with     ,min ,max,ym y y
α α α =  % % % .                                         (16) 

In case of linear reference functions for the membership function of the input quantities, the 
propagation of systematic errors needs only be applied for the α-cuts with 0α =  and 1α = .  

Finally, the confidence interval ,conf Fuzzyy  in the fuzzy case (at the α -level) is then obtained by 

the combination of both uncertainty components: 

, , ,[ ; ]conf Fuzzy r ry y y y yα α= − +% % . (17) 

Whereas the α -level of zero corresponds to the pessimistic case, the optimism case is 
obtained for 1α = . Only the random uncertainty component from the input quantities z  
contributes to the lower and upper bound of the MC confidence interval , [ , ]conf MCy y y= . 

4. NUMERICAL EXAMPLE FOR AN APPLICATION TO LASERSCANNING 

In this section a short numerical example for the comparison of the two approaches from 
section 2 and 3 is presented. The aim is to detect the vertical displacements of the bridge 
under load, e. g., due to traffic or train crossings (Strübing 2007). For this reason, a 
laserscanner of type Leica HDS 4500 was placed beneath the bridge; the measurements in the 
“Profiler Mode” span the green plane in Fig. 3. The discrepancies to the standard case of 
normal distributed measurements are meaningful by many reasons (see also section 1): The 
laserscanner carries out very fast measurements and the measurements are influenced by 
vibrations due to the traffic load of the bridge. 
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Figure 3 - Position of the laserscanner beneath the bridge (Strübing, 2007) 

The time series of the vertical height ( )scanh t  of the bridge at the stations 7.28 m and 21.90 m 
can be expressed in the local coordinate system of the laserscanner by the following equation: 

( )( ) ( ) cos ( )scan slh t s t z t= ⋅ , (18) 

with the slope distance ( )sls t  and the zenith angle ( )z t , measured by the laserscanner. The 

number of measured epochs q  is 100. The vertical displacements ( , )scanw x t  of the bridge are 
obtained by subtracting the mean height of the bridge from the time series in Eq. (18): 

( ) ( )
0 0

1 1
( ) ( ) ( ) ( ) cos ( ) ( ) cos ( )

q q

scan scan scan sl sl
t t

w t h t h t s t z t s t z t
q q= =

= − = ⋅ − ⋅∑ ∑  (19) 

4.1. Uncertainties for the measurements and influence factors 

The output quantity ( , )scany w x t@  depends on the following input quantities iz : 

• Accuracy of the distance (1z , Type A), and their additional constant (2z , Type B) 

• Distance depending term for the accuracy of the distance measurement (3z , Type B) 

• Incidence angle of the measured distance under the bridge ( 4z , Type B) 

• Accuracy of the zenith angle (5z , Type A) and the vertical index error (6z , Type B) 

• Vertical resolution for the zenith angle (the step width of the motor) (7z , Type B) 

The uncertainties and the pdf / membership function for the input quantities iz  are given in 

Tab. 1. The assumptions for the uncertainties of 1z , 5z  and 6z  are based on the technical data 

from the manufacturer and for the uncertainties of 2z , 3z  and 4z  on (Schulz and Ingensand, 

2004) and for 7z  on (Reshetyuk, 2006). The input quantities 3z  and 4z  have a correlation of 

0.5. In order to have an easier representation, each input quantity is modelled either as random 
or as systematic. Please note that in general the uncertainty budget of each input quantity may 
consist of a random and systematic component. 
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Input 
quantity iz  

Error 
component 

pdf /         
membership function 

Uncertainty Type 

1z  random normal 3mmσ =  A 

2z  systematic triangular 
0,

3
3r

a a mm
z mm

+

α=

− =
=%  B 

3z  random normal 0.2mmσ = (1831) 0.9mmσ = (8987) B 

4z  random normal 2.6mmσ = (1831) 7.2mmσ = (8987) B 

5z  random normal 20mgonσ =  A 

6z  systematic triangular 
0,

20
20r

a a mgon
z mgon

+

α=

− =
=%  B 

7z  systematic rectangular 
0,

10
10r

a a mgon
z mgon

+

α=

− =
=%  B 

Table 1 - Uncertainties for the input quantities z   

4.2. Specification and Discussion of the Numerical Results  

This study focuses on the comparison of two different techniques to model and propagate the 
occurring uncertainties in Tab. 1. The pdfs and the order of magnitude of the uncertainties 
from Tab. 1 are in our opinion realistic. Their description must be carefully examined in 
future work, but this is not part of the paper. The results for the numerical example are 
obtained by the techniques described in section 2 and 3.  

4.2.1. Uncertainties obtained by the Monte Carlo approach 

In the MC approach the random and systematic components from Tab. 1 are treated as having 
a random nature. According to section 2 we obtain the uncertainty and the confidence interval 
of the output quantity ( , )scany w x t@  for 100000M =  runs as: 

Monte Carlo result Point 1831 (7.28 m) Point 8987 (21.90 m) 

ˆ yσ  4.4mm 5.9mm 

, [ , ]conf MCy y y=  with 2,5%γ =  [-8.6 , 8.6 ]mm mm [ 11.6 ,11.7 ]mm mm−  

4.2.2. Uncertainties obtained by the Fuzzy approach 

In the Fuzzy approach the treatment of the random and systematic component in the 
propagation process of the uncertainties is different, see section 3. Whereas the random part is 
treated with the law of propagation of covariances or wth the MC approach, systematic errors 
are propagated within a sensitivity analysis (see section 3.2). According to section 3.2 we 
obtain the uncertainty and the systematic component of the output quantity ( , )scany w x t@  for 

0=α  and 1=α  with Eq. (12c), (15) and (16): 
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Fuzzy result (systematic component) Point 1831 (7.28 m) Point 8987 (21.90 m) 

1, 1,max 1,min( ) / 2ry y yα= α= α== −% % %  0.2mm 4.8mm 

0, 0,max 0,min( ) / 2ry y yα= α= α== −% % %  10.3mm 16.1mm 

The α -level of zero refers to the pessimistic case and the α -level of one to the optimistic 
case. Within the propagation process of the systematic component, the radius ,rz%α  of all 

random components iz  from Tab. 1 is zero. In the presented propagation process a systematic 

error component cannot be reduced by repeated measurements. The small systematic error for 
the Point 1831 is due to the small influence of the systematic errors of the zenith angle. 

For the propagation process of the random components with the methods described in section 
2.1, the uncertainty of the input quantities with a systematic error component is set to zero, 
and we obtain the uncertainty and the confidence interval of the output quantity ( , )scany w x t@  

for 100000M =  runs as: 

Fuzzy result (random component) Point 1831 (7.28 m) Point 8987 (21.90 m) 

ˆ yσ  3.9mm 5.4mm 

, [ , ]conf MCy y y=  with 2,5%γ =  [ 7.6 , 7.6 ]mm mm−  [ 10.6 ,10.7 ]mm mm−  

Finally, we obtain the confidence interval for the Fuzzy approach with Eq. (17) for 0=α  and 
1=α  as: 

Fuzzy result (confidence interval) Point 1831 (7.28 m) Point 8987 (21.90 m) 

, 1, 1,[ ; ]conf Fuzzy r ry y y y yα= α== − +% %  for 1=α  [ 7.8 , 7.8 ]mm mm−  [ 15.4 ,15.5 ]mm mm−  

, 0, 0,[ ; ]conf Fuzzy r ry y y y yα= α== − +% %  for 0=α  [ 17.9 ,17.9 ]mm mm−  [ 26.7 , 26.8 ]mm mm−  

5. DISCUSSION AND OUTLOOK 

In the Monte Carlo approach, the uncertainty of the systematic component can be reduced by 
averaged/repeated measurements. Therefore, it is a more optimistic representation of the 
uncertainties than in the Fuzzy approach, where the systematic component of the uncertainties 
cannot be reduced by averaged/repeated measurements.  

Further work has to deal with an extended discussion of the presented Fuzzy approach with 
input quantities having both types of uncertainties, a random and systematic component. 
Additionally, the bias of the output quantity resulting from the evaluation of non-linear 
functions has to be discussed in detail, especially in the Fuzzy approach. 
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