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Abstract

In this contribution, the procedure of estimation of principal components of deformation tensors in the presence
of both independent and correlated tensor observations of displacement field is presented. This approach is based
upon the intrinsic method which assumed the Earth as two-dimensional Riemmannian manifold ( M2) embedded in
the ambient space (three-dimensional Euclidean space E3) at various time instants. The context is divided into two
parts: In the first, we considered independent random vectors and in the second step we considered correlations
between repeated measurements. Then, the covariance components between tensor elements are estimated by
Helmert estimator, based on prior information of variance components. As a case study, both assumption, are
applied to the estimation of principal components of deformation rate tensor observations in Zagros region. The
latest available continuous GPS data around the region, when this research is undertaken, was from January 2006
through January 2009. Due to the sparsity of the data between the January 2006 through January 2007, which
could effect the construction of the Earths surface as regularized and graded M2 at continuous time instants,
we have chose the daily solutions between January 2007 through January 2009. In this region, the invariants
of deformation rates tensors within 95matrix and, (b) after estimation of covariance matrix. The related linear
hypothesis test has documented larger confidence regions for the active areas, after estimation of (Co)variance
components. They lead to a statement of caution when dealing with data concerning extension and contraction, as
well as the orientation of principal stresses. Further detailed analysis of the results is also performed with respect
to geodynamical and statistical aspects.
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1. Introduction

In this contribution, in the presence of errors in mea-
suring a random displacement field (under the normal
distribution assumption of displacement field), stochas-
tic behaviors of principal components of deformation
tensors (strain tensor and TCC) are discussed. We di-

vided the context into two parts: In the first, we con-
sidered independent random vectors of repeated tensor
measurements. In the second step, we considered corre-
lations between repeated measurements. Then, covari-
ance components between tensor elements by Helmert
estimator, based on prior information of variance com-
ponents, are estimated. The possible recorded confi-
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dence regions for eigenspace components based upon
both contexts (in multivariate data analysis), could clar-
ify the impact of (co)variance components estimation in
statement of caution when dealing with data concerning
extension and contraction, as well as the orientation of
principal stresses.

In the second part of the paper, we briefly review
the intrinsic method for surface deformation analysis of
the Earth. In the third part, we deal with the statistical
induction of the principal components of deformation
tensors, in intrinsic method. In the fourth part, the
proposed models are applied by a numerical example to
geodetic network consisting of 11 permanent GPS sta-
tions around the Zagros region, which has nearly daily
solutions (in ITRF 2005) for the period January 2007
through January 2009. Further detailed analysis of the
results is also performed with respect to geodynamic and
statistical aspects.

2. Surface deformation

2.1. Deterministic Model

In this method, the Earth’s surface is considered
as differentiable surface (in which tangent space is
equipped with an inner product) M

2 embedded in E
3.

Deformation of the Earth’s surface is expressible by
mapping of the left surface {M2

l , GΛΦ}, in the reference
time with associated standard positive definite metric
G := [GΛΦ], onto the right surface {M2

r , gλφ} in the
current time with defined metric tensor g := [gλφ]. We
assumed that this mapping is single valued and has con-
tinuous partial derivatives with respect to their argu-
ments. Namely, each point m ∈ M

2
r is the unique in-

verse of the other in a neighborhood of the material
point M ∈ M

2
l , which implies indestructibility of matter

as well as impenetrability of matter.

On the curvilinear coordinates of the {Λ,Φ} ∈ M
2
l

and {λ, φ} ∈ M
2
r , Gaussian moving frames could be con-

structed in the forms

Reference frame of type
Gauss on M

2

l

{G1,G2,G3|Λ,Φ}
G1 := X,Λ , G2 := X,Φ

G3 := G1×G2

|G1×G2|

Reference frame of type
Gauss on M

2
r

{g1,g2,g3|λ, φ}
g1 := x,λ , g2 := x,φ

g3 := g1×g2

|g1×g2|

(1)

where X(Λ,Φ) and x(λ, φ) are the placement vectors
in left and right surfaces, respectively. Then, metric
tensors in curvilinear coordinates for each point on the
surfaces could be written in the forms Gl := [GΛΦ] =<

GΛ,GΦ > vs. Gr := [gλφ] =< gλ,gφ >. Furthermore,
components of the strain tensor at a point are related
to the curvilinear derivatives of the displacement vector
u = x−X (Grafarend and Voosoghi 2003)

El =
1
2 (< u,Λ,u,Φ > + < u,Λ,GΦ > + < GΛ,u,Φ >)

vs. (2)

Er =
1
2 (< u,λ,u,φ > + < u,φ,gλ > + < gφ,u,λ >)

where u,Λ and u,φ are the first-order partial deriva-
tives of the displacement vector with respect to the
left and right curvilinear coordinates. Solving the left
and right general eigenvalue-eigenvector problems of the
pairs {El, Gl} and {Er, Gr}, yield

Λ1,2 = 1

2
(tr(ElG

−1

l
)±

√

(tr(ElG
−1

l
))2 − 4det(ElG

−1

l
)

cosΨl =
f1

lm

‖flm‖ ; Ψl ∈ [−π
2
, π
2
]

λ1,2 = 1

2
(tr(ErG

−1
r )±

√

(tr(ErG
−1
r ))2 − 4det(ErG

−1
r )

cosΨr =
f1

rm

‖frm‖ ; Ψr ∈ [−π
2
, π
2
]

(3)

where {Λ1,Λ2} and {λ1, λ2} are the principal stretches,
where a deformation portrait with a positive eigenvalue
is refereed to the extension, with a negative eigenvalue
as compression. In Eq. (3), orientation of principal
eigenvectors, are represented by Ψl and Ψr, respec-
tively. These angles are conventionally measured coun-
terclockwise with respect to the east directions. The
principal eigenvectors are represented by ‖flm‖2 =
max{‖f1l ‖, ‖f2l ‖} and ‖frm‖2 = max{‖f1r ‖, ‖f2r ‖}, re-
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spectively. However, the eigenvectors could be rep-
resented using nonlinear functions of the components
of deformation tensors, metric tensors and principal
stretches by

fΨl := F(El, Gl,ΛΨ) , ∀Ψ ∈ {1, 2}
vs.

fΨr := F(Er, Gr, λψ) , ∀Ψ ∈ {1, 2}
(4)

where fΨl and fΨr are the left and right eigencolumns
(Moghtased-Azar and Grafarend 2009). The off-
diagonal elements of the metric tensors of the pairs
{El, Gl} and {Er, Gr} are not zeros. They set up in-
tricate relations between elements of deformation ten-
sors and eigenspace components (see Eqs. (3) and (4)).
Hence, in conformity with standard lemma of matrix al-
gebra both pairs of matrices {El, Gl} or {Er, Gr} can
be simultaneously diagonalized, metric matrices being
the unit matrices. Moreover, we make this simplified
assumption that off-diagonal elements of the Gl as well
as of the Gr vanish. The new frame, namely Cartan
reference frame is represented by:

Reference frame of type
Cartan on M

2

l

{C1,C2,C3|Λ,Φ}

C1 = G1

|G1| =
G1√
G11

, C2 = G2

|G2| =
G2√
G22

C3 := C1×C2

|C1×C2|
vs.

Reference frame of type
Cartan on M

2
r

{c1, c2, c3|λ, φ}
c1 = g1

|g1| =
g1√
g11

, c2 = g2
|g2| =

g2√
g22

c3 := c1×c2
|c1×c2|

(5)

Afterwards, in Cartan reference frames, deformation
tensors associated with metric tensors will change to the
E′′

l and E′′

r . The eigenvalues have no change due to the
transformations. However, the orientation parameters
in two cases are different and could be represented by
(Moghtased-Azar and Grafarend, 2009)

tanΘl =

√
det [Gl]

G11+G12 tanΨl
tanΨl

vs.

tanΘr =

√
det [Gr]

g11+g12 tanΨr
tanΨr

(6)

in which the orientation parameters of the maximum
principal axes of the deformation tensors in Gaussian
moving frames are represented by {Ψl,Ψr}, while those

parameters of the transformed deformation tensors in
Cartan moving frames are illustrated by {Θl,Θr}.

Due to the mapping from M
2
l to M

2
r, which is im-

plied by the deformation process, the TCC as a second
deformation tensor would be changed. In accordance
with definition of strain tensors (Eq. 2), TCC could be
illustrated by

KΛΦ = − < w,Λ,GΦ > − < w,Λ,u,Φ > − < u,Φ,G3,Λ >

vs.
kλφ = − < w,λ,gφ > − < w,λ,u,φ > − < u,φ,g3,λ >

(7)
where w = G3 − g3 is defined as the difference of a
unit normal vector on M

2
l and a unit normal vector on

M
2
r . Therefore, deformation of the M

2 could be com-
pletely specified by the changing of metric tensor and
TCC, which TCC is responsible for detection of vertical
displacements of the M

2.

2.2. Stochastic Model

2.2.1. In the context of independent observations

According to the measurement axiom, a measured
symmetric rank-two tensor is random and tensor-valued
Gauss-Laplace normally distributed over R

2×2. Let us
consider the elements of symmetric random deforma-
tion tensor of type rank-two, in Cartan frame by E′′ =
[E′′

ij ] ∈ R
2×2, where vech (E′′) = [E′′

11 E′′

12 E′′

22]
T =:

ỹ′′ ∈ R
3×1 denotes to the half-vectorization of E′′. For a

symmetric deformation tensor E′′, the problem of princi-
pal components analysis versus synthesis is summarized
by (Xu and Grafarend 1996)

ξ =





Λ1

Λ2

Θ



 = 1

2







E′′
11 + E′′

22 +
√

(E′′
11

−E′′
22
)2 + 4E′′

12

E′′
11 + E′′

22 −
√

(E′′
11

−E′′
22
)2 + 4E′′

12

arctan
2E′′

12

E′′

11
−E′′

22







vs.




f1
f2
f3



 =





E′′
11

E′′
12

E′′
22



 =





Λ1 cos
2 Θ+ Λ2 sin

2 Θ
1

2
(Λ2 − Λ1) sin 2Θ

Λ1 sin
2 Θ+ Λ2 cos

2 Θ





(8)

Assume that n independent samples of E′′ namely
E′′

1 , E
′′

2 , . . . , E
′′

n have been observed directly or indirectly
determinedbeen either observed directly or determined
indirectly by other measurements, e.g., GPS measure-
ments, and vectorized into the forms ỹ′′

1, ỹ′′

2, . . . , ỹ′′

n.
Here, we design an array of vectorized tensor coordinates
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ỹ′′1 := E′′

1 , ỹ′′2 := E′′

2 , ỹ′′3 := E′′

3 indexed to the number
of samples

Y
′′ := [ỹ′′

1 , ỹ
′′
2 , . . . , ỹ

′′
n] =





ỹ′′
1.1 . . . ỹ′′

1.n

ỹ′′
2.1 . . . ỹ′′

2.n

ỹ′′
3.1 . . . ỹ′′

3.n



 ; Y
′′ ∈ R

3×n

(9)

Let us suppose a special nonlinear multivariate Gauss-
Markov model for sampling the eigenspace synthesis

Y′′ = F (ξ)1T + Ē ⇒ E{Y′′} = F (ξ)1T (10)

where 1 denotes the n × 1 summation vector with all
its entries being unity, Ē displays residual vectors and
E{Y′′} denotes to first moments. The linearization pro-
cess using the Taylor expansion, yields

F (ξ) = F (ξ0)+J(ξ0)(ξ−ξ0)+O[(ξ−ξ0)⊗(ξ−ξ0)] (11)

where ∆ξ = ξ − ξ0. Hence, we establish a spe-
cial linearized multivariate Gauss-Markov model for the
eigenspace synthesis

Y′′ = F (ξ0)1
T + [J(ξ0)∆ξ]1T +E (12)

which is in vectorized form (Cai et al. 2005)

vec Y′′ = vec Y′′

0 +A∆ξ + vec E

vec Y′′

0 = 1⊗ F (ξ0) ; A = 1⊗ J(ξ0)
(13)

where first moment could be denoted by A∆ξ+vec E+
vec Y′′

0 = E{vec Y′′}; vec Y′′ ∈ R
3n×1 and second mo-

ment is D{vec Y′′} = blkdiag [Qy′′

1
, Qy′′

2
, . . . , Qy′′

n
] =

QY′′ ; rank QY′′ = 3n, in which blkdiag denotes a block
diagonal matrix of Qy′′

i
∈ R

3×3 independent covariance
matrices. With the assumption of independent observa-
tion of random tensor, estimation of the ∆ξ̂ could be
given by

∆ξ̂ = ξ̂ − ξ0 = (ATQ−1

Y′′A)−1ATQ−1

Y′′(vec Y − vec Y′′
0 );

D{ξ̂} = Qξ̂ = (ATQ−1

Y′′A)−1

(14)

where the dispersion matrix of the unknown parame-
ters expressed by D{ξ̂}. Then, the vectorized form of

the estimated observations, namely vec(Ŷ′′), and vec-

torized form of the estimated residual vectors, vec(Ê),
are given by:

vec(Ŷ′′) = A(ATQ−1
Y′′A)−1ATQ−1

Y′′vec(Y′′) (15)

vec(Ê) = vec(Y′′)− vec(Ŷ′′) = D(σ) vec(Y
′′) (16)

D(σ) = (I−A(ATQ−1
Y′′A)−1ATQ−1

Y′′) (17)

2.3. In the context of dependent observations
In previous section, we assumed tensor observations

are independent. Hence, the covariance matrix of obser-
vations is partly known, and incomplete knowledge of
the covariance matrix of the observations may lead to
unreliable results. An appropriate statistical model is
needed to arrive at a proper description of the estima-
tor quality. In this section, we aim to estimate the full
covariance matrix for the observations, using Helmert
method.

Hence, partitioning the full covariance matrix of
measurements into p groups of matrices yields

D{vec(Y′′)} =

p̄
∑

j=1

Qjjσ
2
j +

p̄−1
∑

j=1

p̄
∑

k=j+1

Qjkσjk (18)

with p = p̄(p̄+1)
2 variance and covariance compo-

nents. Here, we assumed that symmetric matrix
Qjk is known and has order 3n × 3n. We can de-
sign an array consisting of matrices Qjk by Q :=
[Q11 Q12 Q22 Q13 Q23 Q33 . . . Qp̄−1p̄ Qp̄p̄] =
[Q1 Q2 . . . Qp] in which D{vec(Y′′)} is positive def-
inite and its diagonal elements priority are given. We
consider that p̄ second moments σ2

j of type variance

and the p̄(p̄−1)
2 second moments of type covariance

are unknown, which are collected in the array σ =
[

σ2
1 σ12 σ2

2 σ13 ...σ23 σ2
3 . . . σp̄−1p̄ σ2

p̄

]T
.

Then, Eq.(15), will be represented by

QY′′ =

p
∑

j=1

Qjσj (19)

Now, let us set up an estimator of Helmert type, based
upon the idea that least squares residuals vec( ˆVY′′ ) are
invariant with respect to the transformation vec(Y′′) →
vec(Y′′)+A ξ. The shifting variate is the squared norm
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of the least-squares residuals. Its expectation, through
Eqs .(15), can be given as

E{vec( ˆVY′′)TQ−1
Y′′vec(VY′′ )}=

tr(DT
(σ)Q

−1
Y′′D(σ)QY′′)

(20)

Grafarend et al. (1980) used a block-structured covari-
ance matrix: QY′′ =

∑p

j=1 Qjσj with the multinomial

inverse of the form : Q−1
Y′′ =

∑p

i=1 Kiσi. He gave a
simple example how to obtain Ki’s. When the covari-
ance matrix D{vec(Y′′)} has a block-diagonal structure
one can also simply obtain Ki’s. Substituting these two
terms in the proceeding equation can be written in a
compact form as E{q} = Hσ in which

hij = tr(DT
(σ)KiD(σ)Qj) , i, j = 1, . . . , p (21)

qi = vec( ˆVY′′)TKi vec( ˆVY′′ ) (22)

where H ∈ R
p×p (Helmert matrix) and q ∈ R

p×1. If H
is regular, an unbiased estimator of (co)variance compo-
nents reads

σ̂ = H−1q (23)

If the Helmert matrix is a regular matrix then it has
the block structure and estimated variances are unbi-
ased and invariant (Grafarend et al. 1980).

3. Tectonics of Zagros Mountains

In western Iran, the main feature of the continental
collision is the Zagros range, which extends for about
1500 km along the NW-SE trending boundary between
the Arabian plate and Central Iran block. The Zagros
Mountains (or Fold-Thrust Belt) are actively deforming
due to the oblique continental collision between Ara-
bian and Eurasian plates. A relatively dense GPS net-
work (distance between neighbor stations vary from 190
to 400 km) which is covered the Zagros in the Iranian
part, proves this collision is still active and the resulting
deformation is distributed non-uniformly in the country,

mainly taken up in the major mountain belts like Alborz
and Zagros (Nilforoushan et al. 2003).

The region is divided into three major areas, the
North Zagros, the Central Zagros, and the region of
the Kazerun fault system separating North and Cen-
tral Zagros. In the North Zagros the deformation is
divided among reverse faults (which indicative of short-
ening of the crust) and right-lateral strike-slip motion on
the Main Recent Fault (MRF). In the Central Zagros,
the deformation is supplied largely in the south along
the Persian Gulf. In Central Zagros, the fold trends
turn to EW direction.

The Kazerun Fault is a NS trending fault zone, which
obliquely truncates the NW (the North Zagros) and SE
(the Central Zagros) trending Zagros Fold-Thrust Belt.
its deformation regime is partitioned into shortening
and strike-slip on different faults. The earthquake focal
mechanisms on the Kazerun Fault system show right-
lateral strike-slip motion. Fig. 1 illustrates the signifi-
cant faults of Zagros range. Talebian and Jackson (2004)
have proposed a tectonical model constrained by earth-
quake slip vector directions to describe schematically
how the Zagros accommodates presently the Arabia-
Eurasia collision.

In the North Zagros (Borujerd-Dezful), oblique
shortening is partitioned into right-lateral strike-slip on
MRF and orthogonal shortening. In the Central Zagros
(Bandar Abbas) no strike-slip is necessary, as the short-
ening is parallel to the overall convergence. The zone
around the Kazerun Fault system is where the transition
between these two regimes occurs, with anticlockwise
rotating strike-slip faults allowing an along-strike exten-
sion between Bandar Abbas and Dezful (see Fig. 2).

Fig. 3 illustrates Zagros range seismic events (with
magnitude Mw ≥ 3 and depth interval 0-30 km) from
Advanced National Seismic System for the period Jan-
uary 2007 through January 2009, which are scaled by
magnitude. According to this representation, the es-
pecially large magnitude earthquakes are restricted to
the North Zagros with epicenter at 31.68N 49.93E and
along the Zagros Mountain Front Fault with epicenter
at 26.87N 54.69E.
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Figure 1: Principal faults of Zagros range. DEF: Dezful
Embayment Fault, KZF: Kazerun Fault, MRF: Main Re-
cent Fault, MFF: Mountain Front Fault, MZT: Main Zagros
Thrust, SFB: Simple Fold Belt, ZFF: Zagros Fore deep Fault.

IRAQ

Figure 2: Summary sketch of the tectonic pattern in the
Zagros. Overall Arabia-Eurasia motions are shown by the
large white arrows (DeMets et al., 1994). Grey arrow couples
indicate the general orthogonal shortening, thin black arrows
the strike-slip on the MRF, large black arrows along-strike
extension due to the Kazerun strike-slip system.

3.1. Iranian permanent GPS network

The National Cartographic Center of Iran (NCC)
(www.ncc.org.ir) has installed more than 100 permanent
stations for monitoring fault movements and earthquake
research. This has greatly improved detailed knowledge
about the regional and local tectonics in and around
Iran. The latest available continuous GPS data around
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Figure 3: Zagros range seismic events (with magnitude
Mw ≥ 3 and depth interval 0-30 km) from Advanced Na-
tional Seismic System (ANSS) for the period January 2007
through January 2009, which are scaled by magnitude.

the Zagros region, when this research is undertaken, was
from January 2006 through January 2009. Due to the
sparsity of the data between the January 2006 through
January 2007, which could influence the construction of
the Earth’s surface as M

2 at continuous time instants,
we have chose the daily solutions between January 2007
through January 2009. The solutions are given in the
International Terrestrial Reference Frame (ITRF2005).
Fig. 4a illustrates the horizontal velocity field along the
Zagros range and Fig. 4b represents the vertical velocity
field along the Zagros range.

3.2. Analysis and discussion results

The pattern of eigenspace components, namely eigen-
values and eigendirection, of the surface strain-rate ten-
sor and their 95% confidence intervals (in units of 10−7

yr−1) is illustrated in the Fig. 5a. Here, we have con-
sidered that observations of the random displacement
field are independent. The positive eigenvalues are rep-
resented by solid lines (red colors) and negative eigen-
values are illustrated by dashed lines (blue colors).

According to our studies, the greatest compression
(shortening) is accommodated between the Central Iran
block and MRF (triangle SALF-SFHN-ABRK). How-
ever, according to our modeling of the displacement field,
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Figure 4: Velocity fields which have nearly daily solutions for the period January 2007 through January 2009 obtained
from 11 permanent GPS stations, (a) Horizontal displacements (with 95% confidence ellipses) , (b) vertical displacements.

amount of the deformation could be induced by both
of horizontal and vertical motions of the region (see
the highest vertical motion of this area which is illus-
trated in Fig. 4b). Variation of eigendirection in this
area is the maximum, which shows variation of direction
of deformation across this region. Also, this illustration
schematically, describes the oblique shortening along the
MFF and SFB.

Most of the extensions occur in the east part of the
belt (including stations SHRZ-LAMD-BAHR, SHRZ-
SFHN-ABRK and SHRZ-ABRK-BABS). These exten-
sions probably are related to transition between NW Za-
gros (Borujerd-Dezful) and SE Zagros (Bandar-Abbas).
According to Talebian and Jackson (2004), this part ro-
tates in the anticlockwise direction and equipped with
strike-slip faults, which took place extension (see Fig. 2).

The estimated eigenspace components of strain ten-
sor based on estimation of covariance matrix of tensor
measurements are represented in Fig. 5. A comparison
of Figs. 5a and 5b shows that, in general after estimating
the covariance matrix of tensor observations, variances
of eigenspace components become bigger. The signifi-
cant variation in localized extension could be seen across
the southeastern part of the Zagros, along the Persian

Gulf shore (stations SHRZ-LAMD-BAHR), which is bounded
by Bandar-Abbas and Dezful. The next variation in ex-
tension, is illustrated in Dezful Embayment fault (DEF)
nearly parallel to MRF (stations AHVZ-SFHN-KRAD).
The significant variations in compressions, are observed
along the Mountain Frontal Fault (MFF) which is marked
by GPS stations LAMD-BAHR-BABS and NW of the
belt illustrated by stations AHVZ-ABDN-ILLM.

In the same manner we illustrated the eigenspace
components of TCC and their 95% confidence intervals
by Fig. 6. The estimated confidence intervals of eigen-
values and eigendirections of TCC over the Zagros re-
gion indicates that deformation is spread over the whole
region of the belt from the NW part to the SE part of
the Zagros. The pattern shows that the deformation ap-
pears with highest positive values across the NW region,
nearly in orthogonal direction to the MRF and Main Za-
gros Fault (MZF). The pattern has insignificant values
in the Central Zagros. It takes the significant negative
values across the SW part, especially along the Sabz
Pushan Fault (SPF) and Persian Gulf shore.

Likewise, we illustrated the eigenspace components
of TCC and their 95% confidence intervals, based on es-
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Figure 5: Pattern of eigenspace components of strain-rate and their 95% confidence intervals, in unit of 10−7 yr−1.
Extensions are represented by solid lines (red colors) and contractions are illustrated by dashed lines (blue colors). (a) an
assumption of independent observations, (b) an assumption of dependency exists between observations.
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Figure 6: Pattern of eigenspace components of the TCC and their 95% confidence intervals, in unit of 10−8 m−1.yr−1.
Positive eigenvalues are represented by solid lines (red colors) and negative eigenvalues are illustrated by dashed lines (blue
colors). (a) an assumption of independent observations, (b) an assumption of dependency exists between observations.
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timation of covariance matrix of TCC by Fig. 6b. Com-
paring Figs. 6a and 6b shows the estimated covariance
components have influence on the confidence intervals of
eigenspace components.

4. Conclusions

The proposed models are applied by a numerical
example with a geodetic network consist of 11 perma-
nent GPS stations around the Zagros region, which have
nearly daily solutions (in ITRF 2005) for the period Jan-
uary 2007 through January 2009. According to our stud-
ies:

i. Greatest shortening is accommodated in oblique
orientation (NS) with respect to the MRF, north-
west part of North Zagros, Central Iran block and
MRF, respectively. However, according to our mod-
eling of the displacement field, amount of the de-
formation could be induced by both of horizontal
and vertical motions of the region.

ii. Most of the extensions occurred in the east part
of the belt. These extensions probably are related
to transition between NW Zagros and SE Zagros.

iii. The pattern of eigenspace components of TCC in-
dicates that the highest positive values observed
across the NW region, nearly in orthogonal direc-
tion to the MRF and MZF. The pattern has in-
significant values in the Central Zagros. It takes
the significant negative values across the SW part,
especially along the SPF and Persian Gulf shore.

iv. The effect of non-independent observations on the
estimation of eigenspace components of deforma-
tion tensors (strain tensor and TCC) is discussed.
It is found that the estimated covariance compo-
nents have influence on the confidence intervals
of eigenspace components, especially in seismically
active regions of the belt (along the Persian Gulf
shore, NW of the belt and region between the Cen-
tral Iran block and MRF). They lead to a state-
ment of caution when dealing with data concerning
extension and contraction, as well as the orienta-
tion of principal stresses.
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