

The GNSS Active Control Point Concept Get the {dynamic} Reference Points when You Need

Joel van Cranenbroeck

Chair of Commission 6 WG 6.2 International Federation of Surveyors (FIG) Belgium, Europa

125- T.A.

10-01

	Wall A					
PtID	Design D	Actual D	Difference(East)			
TP01	0.4	0.398	-0.002			
TP02	0.4	0.400	0.000			
TP03	0.4	0.397	-0.003			
TP04	0.4	0.404	0.004			
TP05	0.4	0.396	-0.004			
TP06	0.4	0.400	0.000			
		Wall B				
TP07	0.35	0.347	-0.003			
TP08	0.35	0.345	-0.005			
TP09	0.35	0.355	0.005			
TP10	0.35	0.346	-0.004			
TP11	0.35	0.355	0.005			
		Wall F				
TP12	0.3	0.305	0.005			
TP13	0.3	0.304	0.004			
TP14	0.3	0.306	0.006			
TP15	0.3	0.297	-0.003			
TP16	0.3	0.301	0.001			

Total Station and Set-up on the Building Top

How to Setup the Total Station ? Where are the control points ?

Kinematic Control² Point Concept (KC2PC)

3. The tilts are computed and applied on existing X,Y.

1.

2.

4. A 7 parameters transformation is applied on the other points.

Active GPS Based Control Point Concept

New 3D Point

- 1. The TPS measures on the prism/GPS compensator OFF
- 2. Then measures the other points on the formwork.
- 3. The GPS fixes are computed and used as « known points ».
- 4. A 7 parameters transformation is applied on the other points.

Leica Geosystems

GPS Continuous Operating Reference Station

Active GNSS Control Points Post-Processing or Real Time ?

Active GNSS Control Points GNSS Monitoring Stations – POST PROCESSING

In the Survey Office the PC running Leica GNSS Spider will log the observations of the CORS station continuously (RINEX).

When the MC content will be downloaded on the PC, Leica LGO will be used to post-process the data and obtain the coordinates XYZ that will be used to set-up the coordinates of the TPS by free resection.

GNSS measurements are processed in « Mixed Tracks » mode using Leica LGO

Active GNSS Control Points GNSS Monitoring Stations – Real-Time

On the top of the building where the surveyor is setting up his Total Station, a Laptop PC running Leica GNSS Spider Positioning will be used to gather the data streams from every GNSS receiver in real time and will display the coordinates on the screen with information about the accuracy, availability and reliability.

Active Control Point in Real Time Mode ...

602 GPS-I N= 79.605 E= 363.189 4 55 GPS-2 N= 68.457 E= 392.810 N= 50.228 GIPS-3 E= 385.815 817 N = 61.429GPS-4 E= 356.207 212

Depending of the environment (vibrations) and the application (moving platform) ...

Steady Environment

3D Space – no gravity

COMPENSATOR is ON CALCULATOR is ON One FACE measurements COMPENSATOR is OFF

CALCULATOR is ON

One FACE measurements

COMPENSATOR is OFF CALCULATOR is OFF Two FACE measurements

3D transformation ...

By using the measurement and the approximate (or setup with local axis) coordinates of the station and an approximate Hz orientation (or any direction) we are computing the "local" coordinate of all the "control" points.

Then we basically have to compute a 3D transformation from the "local" coordinates into the "control" points reference system.

21

$$R = \begin{bmatrix} \cos\phi \cdot \cos\kappa & -\cos\phi \cdot \sin\kappa & \sin\phi \\ \cos\phi \cdot \sin\kappa + \sin\phi \cdot \sin\phi \cdot \cos\kappa & \cos\phi \cdot \cos\kappa - \sin\phi \cdot \sin\phi \cdot \sin\kappa & -\sin\phi \cdot \cos\phi \\ \sin\phi \cdot \sin\kappa - \cos\phi \cdot \sin\phi \cdot \cos\kappa & \sin\phi \cdot \cos\kappa + \cos\phi \cdot \sin\phi \cdot \sin\kappa & \cos\phi \cdot \cos\phi \end{bmatrix}$$

$$s \cdot R = (1+ds) \cdot dR = \begin{bmatrix} 1+ds & -d\kappa & d\phi \\ d\kappa & 1+ds & -d\omega \\ -d\phi & d\omega & 1+ds \end{bmatrix} = I + \begin{bmatrix} ds & -d\kappa & d\phi \\ d\kappa & ds & -d\omega \\ -d\phi & d\omega & ds \end{bmatrix}$$

$$X = dX + (1 + ds) \cdot dR \cdot X_{0}$$

$$\begin{bmatrix} X_{i} \\ Y_{i} \\ Z_{i} \end{bmatrix} = \begin{bmatrix} x_{i} & 0 & z_{i} & -y_{i} & 1 & 0 & 0 \\ y_{i} & -z_{i} & 0 & x_{i} & 0 & 1 & 0 \\ z_{i} & y_{i} & -x_{i} & 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} ds \\ d\omega \\ d\phi \\ d\kappa \\ dT_{x} \\ dT_{y} \\ dT_{z} \end{bmatrix}$$

For 3 common points the following equations are solved using Least Squares Adjustment ...

$\begin{bmatrix} X_i \end{bmatrix}$		$\int x_i$	0	Z_i	$-y_i$	1	0	0			
Y_i		\boldsymbol{y}_i	$-z_i$	0	X_i	0	1	0	$\int c$	ls	
Z_i		Z_i	${\mathcal{Y}}_i$	$-x_i$	0	0	0	1	d	lω	
X_{j}		X_{j}	0	\mathcal{Z}_{j}	$-y_j$	1	0	0	G	lφ	
Y_{j}	=	y_j	$-z_j$	0	X_{j}	0	1	0	$\cdot a$	lκ	
Z_{j}		Z_{j}	${\mathcal Y}_j$	$-x_{j}$	0	0	0	1	d	T_x	
X_k		X_k	0	\mathcal{Z}_k	$-y_k$	1	0	0	d	T_{y}	
Y_k		\boldsymbol{y}_k	$-z_k$	0	X_k	0	1	0	$\lfloor d$	T_{z}	
$\lfloor Z_k \rfloor$		z_k	${\mathcal{Y}}_k$	$-x_k$	0	0	0	1			

[HONG KO	NG FREE STATION MEASUREMENTS]
STNC,	837550.905 ,816457.965 , 5.275
BS2-1,	837569.6435,816408.2781, 8.5017
BS1-a,	837627.0530,816495.6637,14.9585
BS1-b,	837632.7967,816490.8244,12.2958
BS2-4,	837611.2951,816410.5442, 8.9734
BS2-5,	837621.2760,816417.9176, 8.9863
BS2-6,	837606.1948,816465.6419, 8.8079
BS2-7,	837601.6167,816469.8191, 8.8169
BS2-8,	837575.1333,816409.5892, 8.0619
BS5 ,	837607.8995,816554.5884, 7.9920

[HONG	Κ	ONG CONTRO)L	POINTS]		
BS2-1	,	837569.6347	,	816408.2758	,	7, 8.5068
BS1-a	,	837627.0590	,	816495.6490	,	7, 14.9653
BS1-b	,	837632.8048	,	816490.8075	,	7, 12.3006
BS2-4	,	837611.2853	,	816410.5321	,	7, 8.9787
BS2-5	,	837621.2677	,	816417.9040	,	7, 8.9911
BS2-6	,	837606.1954	,	816465.6313	,	8.8144 ,7
BS2-7	,	837601.6187	,	816469.8091	,	8.8238 ,7
BS2-8	,	837575.1248	,	816409.5828	,	8.0678 ,7
BS5	,	837607.9205	,	816554.5785	,	7,9975 ,7

Necond Edition - Cublter - 3D Orthogonal Transformation

File Processing

Options :			Measured : —		B	eload Measurements	Control :		
☐ Includ ✓ Use a ✓ Tied u ☐ Baryc	le Design Matrix in full Rotation matri p on the first cont enterized coordina	the Log x definition rol point ites	Xm : Ym : Zm :			Transformation Zero Residuals (D) Zero Residuals (D^2)	Xc: Yc: Zc:		
10 money	and points loaded		Scale : 1.0		Tx :	0.0000	R×:	0.0000	
IO measu	red points loaded		Sdv : 0.000	0	Ту:	0.0000	Ry:	0.0000	
			Iter : O		Tz :	0.0000	Rz:	0.0000	
Point Id.	Xc	Yc	Zc	Weight	Point Id	. Xm	Ym	Zm	
BS2-1	837569.6347	816408.2758	8.5068	XYZ fixed	STNC	837550.9050	816457.9650	5.2750	
BS1-a	837627.0590	816495.6490	14.9653	XYZ fixed	BS2-1	837569.6435	816408.2781	8.5017	
BS1-b	837632.8048	816490.8075	12.3006	XYZ fixed	BS1-a	837627.0530	816495.6637	14.9585	
BS2-4	837611.2853	816410.5321	8.9787	XYZ fixed	BS1-b	837632.7967	816490.8244	12.2958	
BS2-5	837621.2677	816417.9040	8.9911	XYZ fixed	BS2-4	837611.2951	816410.5442	8.9734	
BS2-6	837606.1954	816465.6313	8.8144	XYZ fixed	BS2-5	837621.2760	816417.9176	8.9863	
BS2-7	837601.6187	816469.8091	8.8238	XYZ fixed	BS2-6	837606.1948	816465.6419	8.8079	
BS2-8	837575.1248	816409.5828	8.0678	XYZ fixed	BS2-7	837601.6167	816469.8191	8.8169	
BS5	837607.9205	816554.5785	7.9975	XYZ fixed	BS2-8	837575.1333	816409.5892	8.0619	
					BS5	837607.8995	816554.5884	7.9920	
•				Þ	•				Þ

Second Edition - Cubiter - 3D Orthogonal Transformation

File Processing

Options : ☐ Includ ☑ Use a ☑ Tied u ☐ Baryc Status : —	le Design Matrix in full Rotation matri up on the first cont enterized coordina	n the Log ix definition rol point ates	Measured : Xm : Ym : Zm : Parameters : Scale : 1.000	00291704		Reloa Tr Zero Zero	d Measurements ansformation Residuals (D) Residuals (D^2) 167.3866	Control : Xc : Yc : Zc :	.00031	
Process st	opped after max it	ter. !	Sdv : .0011 Iter : 21		Ty: Tz:		.0901	Ry: Rz:	.00031 01158	
Point Id.	Xc	Yc	Zc	Weight	Point	Id. >	(m	Ym	Zm	
BS2-1	0011	0012	.0006	XYZ fixed	STNC		837550.9050	816457.9654	5.2810	
BS1-a	.0019	0002	0010	XYZ fixed	BS2-1	L	837569.6336	816408.2746	8.5074	
BS1-b	0011	.0008	.0010	XYZ fixed	BS1-a	3	837627.0609	816495.6488	14.9643	
BS2-4	.0005	.0001	.0001	XYZ fixed	BS1-b)	837632.8037	816490.8083	12.3016	
BS2-5	.0005	0003	.0006	XYZ fixed	BS2-4	1	837611.2858	816410.5322	8.9788	
BS2-6	.0012	0002	0007	XYZ fixed	BS2-5	5	837621.2682	816417.9037	8.9917	
BS2-7	.0006	.0002	0011	XYZ fixed	BS2-6	5	837606.1966	816465.6311	8.8137	
BS2-8	0011	.0018	0003	XYZ fixed	BS2-7	7	837601.6193	816469.8093	8.8227	
BS5	0013	0009	.0007	XYZ fixed	BS2-8	3	837575.1237	816409.5846	8.0675	
1				Þ	BS5		837607.9192	816554.5776	7.9982	Þ
			Ex	it (All right recorded	l Joël van Grana	obroack

All right reserved - Joël van Cranenbroeck

Corrections on Control Points :

Vx(m)	Vy(m)	Vz(m)
0011	0012	.0006
.0019	0002	0010
0011	.0008	.0010
.0005	.0001	.0001
.0005	0003	.0006
.0012	0002	0007
.0006	.0002	0011
0011	.0018	0003
0013	0009	.0007
	Vx(m) 0011 .0019 0011 .0005 .0005 .0012 .0006 0011 0013	Vx(m) Vy(m) 0011 0012 .0019 0002 0011 .0008 .0005 .0001 .0005 0003 .0012 0002 .0006 .0002 0011 .0018 0013 0009

Tx updated	: -167.3866
Ty updated	: 166.8691
Tz updated	: .0901

Scale Factor updated : 1.00000291704

Updated Rotation Matrix

1.0000000	0.0002021	0.0000053
-0.0002021	1.0000000	-0.0000054
-0.0000053	0.0000054	1.0000000

Rotations parameters

Rotation along X axis : .00031 Rotation along Y axis : .00031 Rotation along Z axis : -.01158

```
Point Identification n° STNC
X(20) = 837550.9050
Y(20) = 816457.9654
Z(20) = 5.2810
```

27.04.2012 00:07:12.960 Results of free station calculation (Reduced). Solution:ROBUST [GON/M]

27.04.2012 00:07:12.962 Station Coordinates: 837550.9051, 816457.9653, 5.2788

27.04.2012 00:07:12.964 Standard Deviations: 0.0006, 0.0005, 0.0003

27.04.2012 00:07:12.966 Orientation: 0.01264, 0.000285"

27.04.2012 00:07:12.967 Scale: 0.99999609, 0.00000735

STNC	X	Y	Z
LEICA	837550.9051	816457.9653	5.2788
3D	837550.9050	816457.9654	5.2810
Differences	0.0001	-0.0001	-0.0022

Proof of Concept October 2005

Results

SETUP	Absolut	e Differe	nces	Relative	Differen	ces
	ΔX	ΔY	ΔZ	Δx	Δy	Δz
S1	0.0022	-0.0095	-0.0071			
S2	0.0022	-0.0105	-0.0043	0.0000	-0.0010	0.0028
S 3	0.0025	-0.0130	-0.0031	0.0003	-0.0035	0.0040
S4	0.0030	-0.0113	-0.0048	0.0008	-0.0018	0.0023
S 5	0.0027	-0.0121	-0.0052	0.0005	-0.0016	-0.0009
S 6	0.0028	-0.0108	-0.0026	0.0006	-0.0013	0.0045

Tilted !

Tx updated	: 12381	.3842				
Ty updated	: 10804	.8800				
Tz updated	: 1.1048	3				
Scale Factor updated : .999999999929						
Updated Ro	tation Matrix					
-0.6980183	-0.7160799	-0.0001290				
0.7160799	-0.6980183	-0.0000045				
-0.0000868	-0.0000955	1.0000000				
Rotations parameters						
Rotation along X axis :00547						
Rotation along Y axis : .00497						
Rotation along Z axis : -45.73177						

Tx updated	: 12352	.6160	
Ty updated	: 10807	.7507	
Tz updated	: -683.3	258	
Scale Factor updated : .999999999999			
Updated Rotation Matrix			
-0.6991354	-0.7119652	0.065690	3
0.7148607	-0.6977957	0.045336	4
0.0135605	0.0786557	0.996809	6
Rotations parameters			
Rotation along X axis : 4.51172			
Rotation along Y axis :77698			
Rotation along Z axis : -45.63717 - when it has to be right			

Considerations ...

- The way to design a solution is to first try to derive the calculations needed to provide the results.
- What can be computed by using the observables to derive the coordinates, can be computed by using directly the coordinates derived from the observations (Joel's Principle) and by considering the associated variance-covariance matrices.
- To provide « extreme » results we have to revisit the way we are calculating our coordinates
- Functional models developed for Photogrammetric applications have always been a source of inspiration.
- Active Control Point Concept can be extended to a network.
- GNSS Network corrections has demonstrated successful capacity to support monitoring operations.
- Much closed integration between GNSS measurements and TPS into a global computing scheme (mutual benefit) ...

Networked Total Stations Concept (patented)

Automatic Total Stations are networked using common points (pass points) that must be only considered as "stable" during the measurement cycles. GPS antenna's collocated with 360 degree reflectors are providing control points on the spot.

- when it has to be **right**

4 Hydro Power Stations World Bank Project UHE Ukraine

WORKFLOW Post-Processing

Jeica Geosystems

High Rise Buildings Monitoring & GNSS

Obstructions will remain a serious limitation on the use of GNSS Technology. But even for setting up GNSS Reference Stations to assist GNSS monitoring

Distance Dependency

GNSS N-RTK : Derived Observation Corrections

Master Station(s) in N-RTK MAC

GNSS Network RTK aided Seawall Monitoring System Diagram

Single GPS RTK vs GPS Network RTK MAX Processing in Real Time L1 & L2 GPS data

Multiple RTK Positioning Plot

Geosystems

For Demo Use Only

Single GPS RTK vs GPS Network RTK MAX Processing in Real Time L1 & L2 GPS data

Single GPS RTK vs GPS Network RTK MAX Processing in Real Time L1 & L2 GPS data

Single GPS RTK vs GPS Network RTK MAX Processing in Real Time L1 only GPS data

Single GPS RTK vs GPS Network RTK MAX Processing in Real Time L1 only GPS data

For Demo Use Only

Multiple RTK Positioning Plot

Geosystems

For Demo Use Only

Single GPS RTK vs GPS Network RTK MAX Processing in Real Time L1 only GPS data

Multiple RTK Positioning Plot

Geosystems

For Demo Use Only

High Rise Buildings Monitoring Using Virtual RS

