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Abstract. Terrestrial laser scanning (TLS) allows 
acquiring the geometry of objects and surfaces with 
high spatial resolution and high accuracy over large 
areas. So, it is a potentially attractive technology for 
structural monitoring and geomonitoring. For these 
purposes a sequence of scans has to be acquired at 
different epochs, and changes between the epochs 
need to be detected and quantified by analyzing the 
resulting point clouds. An essential step in this 
analysis is the transformation of the point clouds 
into a common, stable reference system. Standard 
approaches, well established for other purposes of 
TLS, are not applicable or not sufficiently accurate 
for monitoring if long scanning distances arise (sev-
eral hundred meters or more) or significant parts of 
the point cloud change between the scan acquisi-
tions.   

We present an approach for a data driven registra-
tion of pairs of scans, which can easily be extended 
to entire scan sequences. The core of the approach 
is the automatic identification of stable areas and 
their use for the fine registration. This is achieved 
through an iterated segmentation of the point clouds 
into stable and unstable parts based on octree cells 
and distances between centroids. The process is 
repeated until the transformation obtained using 
ICP does not change significantly anymore between 
consecutive iterations.   

The proposed approach and the resulting extrac-
tion of deformations are successfully demonstrated 
using two data sets with very different characteris-
tics: (i) an indoor scene (close range, controlled 
environment) and (ii) an alpine glacier (long dis-
tance, real monitoring application). The results 
show that the algorithm is working well if certain 
control parameters have been chosen sensibly. 
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1  Introduction 
 
The core task of geodetic deformation monitoring is 
the statistically founded identification and quantifi-
cation of geometric changes with respect to a stable 
reference frame. This reference frame can be based 
on points known to be stable and located outside or 
within the monitored area. In the former case the 
reference frame is typically realized using GNSS. In 
the latter case, several difficulties arise. First, it may 
not be clear beforehand which points are actually 
stable and which are not; thus the definition of the 
geodetic datum by classification of monitored 
points as either stable (reference points) or unstable 
(object points) is an integral component of classical, 
strict deformation analysis, see e.g. Niemeier 
(1985), Caspary (2000), Heunecke et al. (2014). 
Secondly, the sensors used for monitoring may not 
be appropriate for identifying individual, clearly 
defined points at all, and thus the stable reference 
frame needs to be realized using different means. 
This is the case in particular for terrestrial laser 
scanning (TLS), and the datum realization problem 
is not yet solved satisfactorily for TLS-based moni-
toring.   

A well-established standard solution for register-
ing various laser scans i.e., for transforming them 
into a common coordinate system, is to place artifi-
cial objects (e.g., spheres or retroreflective targets) 
within the scanned scene, identify them in the dif-
ferent scans during post-processing, estimate a rep-
resentative point (e.g., the center) for each of them 
from the coordinates and possibly signal-strengths 
within the TLS point cloud, and finally use these 
points to estimate the parameters of a congruency 
transformation between the individual point clouds. 
These point clouds can either be obtained by scan-
ning from different locations at one monitoring 
epoch (i.e., assuming the monitored scene to be 
stable while these scans are taken) or by scanning at 
different epochs (assuming that potential changes 
occurred between these). For transforming the point 
clouds into an external reference frame the positions 
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of some of these artificial objects need to be deter-
mined separately e.g., using GNSS or a total station 
(Barbarella et al., 2013; Prokop & Panholzer, 2009; 
Bitelli et al., 2004). It is possible to obtain the 
georeferencing data simultaneously with the point 
clouds by integrating a GNSS antenna into the tar-
gets (spheres) and collecting GNSS data while 
scanning.1 This idea can be extended to cases where 
the targets move between scanning epochs, and 
could even allow quasi-continuous monitoring by 
fully automatic repeated scanning. 

However, placing the targets may be cumbersome 
or hardly possible for a monitoring application (area 
of interest might be inaccessible or access may be 
dangerous), and assuring their stability with respect 
to the immediate neighborhood may require signifi-
cant in-situ work (e.g. for setting up a pillar). Even 
more critically, the laser scanner will have to be set 
up in one or more safe locations with sufficiently 
unobstructed view to sufficiently large parts of the 
area of interest. For quasi-continuous monitoring, 
the setup location will additionally have to be sta-
ble. So, the instrument location(s) will typically be 
far from the monitored surfaces (several hundred 
meters or more). At such distances, spheres and 
other artificial targets of manageable size (a few cm 
to dm of diameter) are too small in relation to the 
footprint and angular increment of the scanner for 
reliable detection and accurate estimation of the 
respective center. For reasons of uncertainty propa-
gation the targets cannot be located much closer 
than the monitored surfaces.  

Solutions that avoid the need of artificial targets 
are of great interest therefore. Such solutions ex-
ploit the potentially high redundancy provided by 
the large number of points within the point cloud 
and are typically either based on the iterative closest 
point (ICP) algorithm, Besl and McKay (1992), 
Chen and Medioni (1992), or on automatic extrac-
tion and correspondence detection of geometric 
features, e.g., planes, within the point clouds, see 
Previtali et al. (2014) for a recent overview with 
many further references. These registration algo-
rithms work well if there are no or only negligible 
geometric changes between the overlapping point 
clouds. This is in contrast to what we expect when 
applying point cloud based technologies to defor-
mation monitoring, where a significant part of the 
point cloud may change between epochs.  

                                                           
1 Glira et al. (2013) have investigated this based on a pro-
posal by the second author of the present paper. 

We are working on an approach for areal defor-
mation monitoring using point clouds which auto-
matically detects stable and unstable regions within 
the point cloud, and ultimately represents defor-
mations and changes based on identifying objects 
and distinct surface patches within the instable 
parts, using the stable parts of the point cloud for 
datum realization. In this paper, we focus on the 
proposed algorithm for automatically identifying 
the stable regions within two point clouds covering 
approximately the same area and obtained at differ-
ent epochs. The approach can easily be extended to 
a time series of point clouds by pairwise application 
to consecutive epochs or to a reference and a moni-
toring epoch. 

The algorithm consists of an iterated segmenta-
tion of the two point clouds into a part with points 
transforming equally (supposed to be the stable 
part) and parts with points transforming differently 
(supposed to be the instable parts). Similar to the 
approach in Wujanz et al. (2014) octree cells are 
used to partition the point clouds. The segmentation 
is preceded by a coarse alignment of the point 
clouds, and it is followed by a transformation of 
both point clouds into a common coordinate sys-
tems represented by the entirety of the points classi-
fied as stable. Finally, the changes between the two 
epochs are analyzed using only the points classified 
as unstable. 

The algorithm is presented in sec. 2. Its applica-
tion to real data sets is demonstrated and discussed 
in sec. 3. 
 
2  Methods 
 
2.1  Coarse Alignment 
 
We assume that the entire area to be monitored is 
covered by a single point cloud per epoch, and that 
point clouds for the two epochs ti and tj are availa-
ble. First the two point clouds need to be coarsely 
aligned by transforming them approximately into 
the same coordinate system. This can be achieved 
automatically, e.g., using the Keypoint-based 4-
Points Congruent Sets (K-4PCS) method proposed 
by Theiler et al. (2014). It can also be achieved 
manually using the corresponding tools within 
standard point cloud processing software.  

If scanning from one location is enough and the 
scanner is permanently installed (e.g., on a pillar) 
with sufficiently stable orientation, the coarse 
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alignment is already achieved through this stable 
setup.  
 
2.2  Segmentation and Registration 

 
Both point clouds are then split into equally sized 
octree cells (Meagher, 1992) by using the same 
resolution Smin corresponding to the size of voxels at 
the lowest octree level. Smin is chosen by the user 
under consideration of the point density within the 
point cloud (sufficient number of points within each 
cell containing relevant parts of the monitored area) 
and the size of objects possibly moving or changing 
shape within the area of interest (ideally no more 
than one such object per cell). For instance, 
Smin = 5 cm was chosen for the data set shown in 
Fig. 1.   
 

 
Fig. 1 Example of an octree based point cloud segmentation 

with a resolution Smin = 10 cm (top: wireframe with input 

cloud; bottom: points colored in correspondence with the cell 

they belong to). 

 
Ignoring the fact that the two point clouds have 

been aligned only approximately, they are split us-
ing perfectly identical octree cells (i.e., equal coor-
dinates of corresponding corners). We have en-
forced this in our software implementation, based 
on the point cloud library (PCL)2, by specifying an 
identical bounding box for both point clouds in ad-
dition to using the same value Smin. The bounding 
box is calculated such that it actually contains all 
points of both point clouds.  

Each octree cell containing less than a minimum 
number Nmin of points is subsequently ignored, i.e., 
the points within such cells are not used during the 
current iteration of the algorithm. This mitigates the 
effect of spurious points and eventual outliers (e.g., 
                                                           
2 http://pointclouds.org 

points in the air). In the numeric examples below, 
we have used Nmin = 20. 

Now the points within a certain octree cell Ck,i for 
epoch ti need to be associated with the correspond-
ing points of epoch tj. We assume that these corre-
sponding points are again within one octree cell, 
and search for that cell Ck,j in the neighborhood of 
Ck,i. We do this by calculating the geometric centre 
(centroid) of all octree cells from the respective 
inlying points and carrying out a k-d tree based 
search (Bentley, 1975) to find the nearest centroid 
in the cloud of tj for each centroid in the cloud of ti. 
The result is a pairwise association of octree cells 
(one obtains pairs of centroids for corresponding 
octree cells in a temporal sequence of scans). 

 
 

 
Fig. 2 Centroids of the octree cells of two scan epochs. Red 

points belong to the first and blue points to the second acqui-

sition. The 3D distances of the centroid pairs (marked with 

red ellipses) are between 3.8 and 4.2 mm.     

 
Now the difference vectors of the centroids of the 

corresponding cells are calculated. Based on this 
information, a classification into stable (no change 
occurred) and unstable (something has happened) is 
made. If the coordinate difference of a pair of cen-
troids stays within a given threshold (Dmax), it is 
assumed that the octree cells are identical, and 
therefore no deformation has occurred. These cells 
are then classified as stable. This Dmax can either be 
data based or on prior knowledge. Both of them can 
have their justification depending on the situation 
that is observed. 
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with 
 

,Xk i  centroid of octree cell k in epoch i 

,i jD  average distance of all corresponding octree 

 cells between epochs i and j  

,i jDs  empirical standard deviation of these  

 distances 

 median of these distances 

 median of their absolute deviations (MAD) 

D
max

  user selected threshold 

 
For scans where the majority of points refer to 

stable areas we found the data based thresholds as 
in (1) and particularly the more robust version (2) to 
work well. However, they both failed in cases 
where more than 50% of the points were associated 
with moving areas. In this case, a user selected val-
ue Dmax reflecting the accuracy of the approximate 
alignment, the accuracy of the scanner, and the 
roughness of the stable surfaces within the octree 
cells is suitable to correctly identify stable areas. 

All points belonging to cells classified as stable 
are then transformed from epoch tj to ti by fine reg-
istration using ICP. The resulting transformation 
parameters are applied to the entire point cloud of 
epoch tj.  

For control purposes, the bounding box is also 
transformed using the same parameters. If the ap-
proximate alignment (as described in sec. 2.1) was 
sufficiently accurate, the coordinates of the bound-
ing box points will not change significantly by this 
transformation. If they do, the result obtained so far 
is considered a better approximation of the align-
ment between the two epochs, and the entire pro-
cess described in sec. 2.2 is repeated starting from 
that approximation. This is carried out iteratively 
until convergence is achieved i.e., the coordinates 
of the bounding box do not change significantly by 
the transformation. Now the points of both epochs 
are available in the same coordinate frame (defined 
by the stable areas of ti) and deformation analysis 
can be carried out. 
 
2.3  Deformation Analysis 
 
Once the datum has been established using the 
points associated with stable parts of the monitored 
area, the deformations/changes in the other parts 

can be analyzed. This is the last step of the work-
flow, and its investigation is the subject of future 
work. We have chosen two different approaches to 
analyze the changes in the numeric examples within 
this paper. One is to derive displacement vectors 
between the surfaces by using directly the points 
within the point cloud, or the triangular mesh de-
rived therefrom. For this approach we use the “3D 
compare” tool in Geomagic3. The tool calculates 
and visualizes the distance between the mesh of ti 
and tj pointwise either along fixed, predefined direc-
tions (e.g. vertical) or along the respective direction 
of least distance, which varies depending on loca-
tion and topography of the surfaces. The results of 
such an analysis are easy to calculate but may be 
very difficult to interpret in particular with respect 
to object displacement and rotation.  

A useful alternative approach would be to identi-
fy objects within the unstable areas, analyze the 
rigid body motion and deformation of these objects, 
and the deformation of the background. Since this is 
subject of future work, we have chosen a much 
simpler alternative approach, based on using the 
centroids within the unstable areas as feature points. 

Assuming that the correspondence between two 
centroids of unstable cells is correct, we obtain the 
translation of a known point and not just a differ-
ence between two surfaces where we cannot track a 
single point as with the first method presented. 
However, this approach delivers only meaningful 
results if the points within a cell move similarly and 
no rotation occurred. To overcome this problem, the 
translations of a set of neighboring centroids could 
be used.  
  
3  Application examples 
 
Two different data sets are used to test the algo-
rithms presented above using parts of PCL for their 
implementation. The first one is a short-range in-
door scene with a couple of small objects of regular 
and simple geometry arranged on a table (Fig. 3) 
and scanned using a Faro Focus3D S 120 from a 
distance of about 2 m. Changes were introduced by 
manually moving two of the cuboids. This data set 
represents a highly controlled situation with known 
ground truth and negligible environmental impacts. 

The second data set consists of two scans of the 
Weissmies glacier (Fig. 4) in Valais, Switzerland, 
acquired in April and September 2015 from a dis-
                                                           
3 http://www.geomagic.com/en/ 
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tance of about 1.5 km using a Riegl VZ-6000. For 
this data set representing a real monitoring 
application ground truth is not available. However, 
plausibility checks can be performed on the results 
using displacement rates from terrestrial radar 
interferometry obtained during the entire period 
between the two scans. 
 

 
Fig. 3 Image of indoor scene with the two moved cuboids 

(red ellipse). The size of the table is 120 × 80 cm2 

 

 
Fig. 4 Image of the scanned area (1000 × 800 m2) at the 

Weissmies glacier.  
 
3.1  Results of indoor data set 
 
Fig. 5 shows the result of the classification obtained 
using Smin = 5 cm and the data driven distance 
threshold of eq. (1). Corresponding to the true situa-
tion, most octree cells were classified as stable in 
this case. Potential false positives (cells classified as 
unstable although they contain in reality only points 
associated with stable areas) are not a problem at 
this stage, because the corresponding points are just 
omitted for the datum definition, and there are still 
by far enough points left for an accurate registration 
of the two epochs. In fact, the classification result 
shows that the fine registration of the indoor scans 
is based only on points that did not move. 

If we have a closer look at the area surrounding 
the two moved cuboids (Fig. 6), which is also the 
only area where cells were classified as unstable, 
we see that false positives only occurred at a few 
places on the table behind the cuboids. These false 
classifications are due to the different obstruction of 
the background by the moved cuboids. After the 
cuboids have been shifted more of the table be-

comes visible in the background to the left of the 
objects, while more of it becomes obstructed to the 
right of them. Correspondingly, the centroids of 
octree cells containing partially shaded parts of the 
table are shifted as the obstruction changes. Similar 
effects would have to be expected in many parts of 
the scene if the scanner location changed between 
epochs. However, this is not critical as long as it 
does not cause a significant number of false nega-
tives i.e., many actually unstable areas to be classi-
fied as stable and thus deteriorating the quality of 
the registration. 
 
 

 
Fig. 5 Classification result for the indoor scene. The arrows 

represent the displacement vectors of the centroids (red for 

cells classified as unstable, blue for cells classified as stable). 

 
 

 
Fig. 6 Display of the two point clouds overlaid with the dis-

placement vectors of the centroids. Blue points represent the 

first acquisition, green points the second one. The red arrows 

show the displacement of cells classified as unstable, the 

ellipses indicate false detections due to decreasing (red) or 

increasing (blue) obstruction. 

 
Finally, the surface deviations between the clouds 

were calculated using the Geomagic tool mentioned 
in sec. 2.3. To highlight the quality of the registra-
tion, these deviations are shown for the entire scene 
in Fig.  7, not only for the areas classified as unsta-
ble. The figure shows that the differences are below 
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1 mm almost everywhere within the stable areas 
(compare to Fig. 5); this indicates the successful 
registration. The cuboids were moved by 25 mm, 
and this is very well reflected in terms of magnitude 
by the extracted surface differences. If the infor-
mation from the difference vectors (Fig. 5 and 
Fig. 6) of the centroids is taken into account too, the 
direction of the movement can also be estimated. 
 

 
Fig. 7 Deviations (in mm) of the point clouds of the indoor 

data set after the proposed fine registration; deviations ob-

tained using the “3D Compare” tool in Geomagic.  

 
Further investigations will be devoted to the ap-

propriate, possibly adaptive, choice of Smin. The 
associated problem can easily be visualized using 
the indoor data set. If Smin is too large there may be 
little or no cells only containing points from moved 
areas, and such points will have too little influence 
in mixed cells which will consequently be classified 
as stable. If, on the other hand, Smin is too small ob-
jects can move from one cell into another one, and 
false correspondences may be selected as displayed 
in Fig. 8. 
 

 
Fig. 8 Example of falsely matched cells. Cell B’ was 
matched to A” instead of B”, because of too small Smin. 

 
3.2  Results of outdoor data set 
 
The influence of the Dmax is demonstrated with the 
example of the Weissmies glacier where more most 
of the scanned area is moving. As mentioned be-
fore, this threshold is used to classify the cells into 
stable and unstable depending on whether the limit 
is exceeded or not.  

Using the (robust) data driven distance threshold 
of eq. (2), most of the areas covered by the scans of 
the Weissmies glacier are classified as stable 
(Fig. 9, top). However, from interferometric radar 
data we know that the glacier is actually moving, 
and thus the majority of the points in the point 
cloud should be classified as unstable. The data 
driven selection of the threshold fails, because most 
of the scene is moving. Taking into account the 
expected scanning accuracy, we therefore chose a 
fixed threshold of 10 cm according to eq. (3). A 
comparison of the classification result (Fig. 9, bot-
tom) to the image of the glacier (Fig. 4) shows that 
the points now classified as stable are actually lo-
cated on the rock faces, which are indeed expected 
to be stable, whereas most of the glacier surface 
was correctly classified as unstable. The algorithm 
again seems to be successful. 
 
 

 
Fig. 9 Results of the classification with different displace-

ment thresholds (eq. (2), top; Dmax = 10 cm, bottom). The 

arrows symbolize the shift of the centroid for each octree 

cell. Blue arrows denote stable cells, red unstable ones, ac-

cording to the classification.  
 
The visualization of the differences between the 

two registered point clouds (Fig. 10) supports this 
assumption. The rocky areas show no significant 
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changes (displacements < 10 cm) and there seems 
to be no rotation left despite the fact that most sta-
ble points are concentrated in the left part of the 
point cloud. The order of magnitude of the other 
changes is plausible and can be attributed to glacier 
flow, ice break-offs, melting and similar processes. 
As with the indoor scene, one can analyze the 
changes in combination with the result of the differ-
ence vectors shown on the bottom image of Fig. 9. 
 

 
Fig. 10 Deviations (in m) of the point clouds of the Weiss-

mies glacier after the proposed fine registration; deviations 

calculated using the “3D Compare” tool in Geomagic. 

 

4  Conclusion 
 
In this paper we presented a marker less approach to 
register point clouds for monitoring based on terres-
trial laser scanning. The goal of the proposed ap-
proach is to transform the scans of all epochs into a 
common, stable reference frame. This is achieved 
by iterative segmentation of pairs of point clouds 
into stable and unstable parts, and fine registration 
using ICP based on the stable parts only. Two pa-
rameters control the performance of the resulting 
algorithm, the minimum size of the octree cells used 
for partitioning the point clouds, and the maximum 
calculated displacement with which parts of the 
point clouds are classified as stable. Although a data 
driven approach has been presented and successful-
ly used, further investigations are required to adap-
tively and optimally determine these parameters.  

We have successfully demonstrated the proposed 
approach using (i) an indoor scene where the known 
displacement of 25 mm of two objects was correctly 
indicated by the results, and (ii) an outdoor scene 
where the changes of a glacier during the 6 months 
between the scans were plausibly indicated. Future 
work will be focused on extending the approach to a 
more comprehensive, object based analysis of the 
unstable areas.   
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