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Abstract.  
In many geodetic engineering applications it is 

necessary to solve the problem of describing a 

measured data point cloud, measured, e.g. by laser 

scanner, by means of free-form curves or surfaces, 

e.g., with B-Splines as basis functions. The state of 

the art approaches to determine B-Splines yields 

results which are seriously manipulated by the 

occurrence of data gaps and outliers.  

Optimal and robust B-Spline fitting depend, 

however, on optimal selection of the knot vector. 

Hence we combine in our approach Monte-Carlo 

methods and the location and curvature of the 

measured data in order to determine the knot vector 

of the B-Spline in such a way that no oscillating 

effects at the edges of data gaps occur. We 

introduce an optimized approach based on 

computed weights by means of resampling 

techniques. In order to minimize the effect of 

outliers, we apply robust M-estimators for the 

estimation of control points.  

The above mentioned approach will be applied to a 

multi-sensor system based on kinematic terrestrial 

laserscanning in the field of rail track inspection. 

  

Keywords. Deformation, free-form curve, B-

Splines, knot adjustment, robust parameter 

estimation, Monte-Carlo resampling techniques  

1  Introduction 

In several geodetic applications deformations and 

deflections to a target-state are derived from point 

clouds, captured, e.g. by laser scanner. In order to 

determine deformations or deflections, the spatial 

object has to be modelled. Especially complex 

objects need to be approximated by free-form 

curves and surfaces, such as B-Splines, in a 

sophisticated manner.  

Unfortunately, the measurements of the deformed 

object may contain data gaps and outliers. The state 

of the art approaches to determine B-Splines yields 

results which are seriously manipulated by the 

occurrence of data gaps and outliers. Missing data 

lead to oscillating effects at the edges of the data 

gap. Outliers could have an unlimited effect on the 

results, if the unknown parameters (the control 

points) are estimated by means of the least-squares 

methods. Furthermore, the outliers have to be 

distinguished from “real” deformations and wear 

marks. 

B-Spline fitting usually consists of 3 main steps. 

First step is the parameterization of the measured 

data. The second step is the knot adjustment, which 

yields the knot vector U. The third step is the 

determination of the control points by means of a 

linear Gauss-Markov-Model (GMM) with the 

previously determined parameterization and knot 

vector as input parameters. 

The parameterization of the measured data can be 

achieved using the mentioned methods of Piegl and 

Tiller (1997): equally spaced, chord length and 

centripetal. Lai and Lu (1996) introduced an 

approach to estimate location parameters of the 

measured points which leads to a non-linear least 

squares fit.  

Knot adjustment for data fitting with B-Splines 

includes two main tasks. On the one hand the 

number of knots has to be determined. On the other 

hand the locations of the knots have to be adjusted.  

The former task, a model selection problem, can 

be solved by applying an information criterion 

(Akaike or Bayesian, cf. Gálvez et al. (2015)) or the 

usage of a significance test (cf. Liu and Wang 

(2004)). 

The latter task, an optimization problem, was 

tackled by plenty of researchers with a vast variety 

of approaches. Since the first works in the field of 

Splines in the 1960s and 1970s the optimal choice of 

the knot locations became important.  

However, two problems make the optimal choice 

of the knot locations difficult. First of all there is no 

analytic expression for the optimal knot locations 

and secondly there exist many local optima of the 
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least-squares function (cf. Gálvez et al. (2015); 

Jupp (1978); Rice (1969)). 

Nevertheless, there are approaches to estimate the 

optimal knot locations. Schmitt and Neuner (2015) 

try to estimate the knot locations and the position of 

the control points at the same time. In order to solve 

the resulting highly non-linear system, they 

introduce adequate initial values and constraints. 

The approaches to align the knot vector to the 

measured points are well known in many research 

papers. Piegl and Tiller (1997) align it to the 

location parameter of the measured points. Park and 

Lee (2007) align it to the curvature of the measured 

points. 

With the rising capability of information 

technology artificial intelligence techniques obtain 

good results in an adequate amount of time. Some 

approaches use neural and functional networks, 

respectively. Other approaches use metaheuristic 

techniques like genetic algorithms (cf. Sarfraz and 

Raza (2001); Yoshimoto et al. (1999)), artificial 

immune systems (cf. Gálvez et al. (2015); Ülker 

and Arslan (2009)) or estimation of distribution 

algorithms (cf. Zhao et al. (2011)).  

As far as we know, the artificial immune system 

of Gálvez et al. (2015) is the approach which yields 

the best results in knot adjustment until now, 

especially for complex data with gaps, 

discontinuities and cusps. Nevertheless this 

approach is still time-consuming and CPU-

intensive and it is not unusual that the final solution 

converges into a local optimum instead of the 

global optimum. 

The third and final step in B-Spline fitting is the 

estimation of the position of the control points. 

Piegl and Tiller (1997) and Koch (2009) estimate 

the control points as parameters by means of a 

linear GMM. The observation vector is formed of 

the measured data. The design matrix consists of 

the basis functions. The parameters were 

determined by minimizing the residual sum of 

squares. As far as we know there is no work, which 

describes the usage of robust estimators, like 

Huber-, Hampel or L1-estimator, instead of the 

least-square-estimator to determine the position of 

control points of a B-Spline. Because of the 

characteristics of laser scan data, like the fast but 

uncontrolled acquisition of millions of data points, 

we have to consider the probability for a significant 

amount of outliers, which seriously affects the 

results. That is the reason for introducing robust 

estimators into the estimation of the control points.  

The paper is organized as follows: In Section 2 

the mathematical essentials for B-Spline curves and 

the estimation of the position of the control points 

are briefly described. Section 3 points out the basic 

properties of robust parameter estimation. Section 4 

contains a detailed description of our proposed 

approach of knot adjustment. In Section 5 the 

different results of the proposed approach and the 

robust estimation are presented and compared 

among each other and with an existing algorithm. 

This paper finishes with a short conclusion and an 

outlook in Section 6. 

2  B-Spline curves 

The functional relation of a B-Spline curve is 

defined by (cf. Piegl and Tiller (1997)):   

          

 (1) 

 

The curve point is 

calculated by a linear combination of the p-th-

degree B-Spline basis functions with  

and the control points , where 

n+1 is the number of control points. The p-th-degree 

basis functions can be calculated by a recursion 

formula (cf. Cox (1972); de Boor (1972)) 

  

(2) 

 

 
 

where 

with (3) 

 

The knot vector U is a nondecreasing sequence of 

real numbers. The real numbers are called knots. 

The first p+1 knot of U usually consist of zeros. The 

last p+1 knots usually consist of ones. m+1 is the 

size of the knot vector and can be calculated by:  

(4) 

 

The parameterization of the (measured) data 

points is also called location parameter. They are 

stored in the vector , with r the number 

of the data points. For example Piegl and Tiller 

(1997) mention 3 methods (equally spaced, chord 

length, centripetal) to parameterize the observations. 

In the proposed approach we used the chord length, 

which sums up the Euclidean distance between the 

sorted observations, to parameterize the measured 
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A

data. Since the parameterization method is not in 

the focus of this paper, the widely used method 

chord length was chosen. Nevertheless our 

approach allows to use the other methods.  

In order to fit a B-Spline to measured data l the 

knot vector U and the vector with parameterized 

data points Ul are determined previously. In a linear 

GMM the parameter x, the positions of the control 

points, are estimated. The design matrix A is 

constructed by the basis functions: 

 

(5) 

 

 

3  Robust parameter estimation 

Robust estimators include the attribute, that their 

influence function Ψ is limited. That means that the 

influence of data with large residuals (possible 

outliers) on the parameter estimation is limited. The 

M-estimators, like Huber-, Hampel- or L1- 

estimator, can be distinguished in their influence 

function. For example, the influence function of the 

Huber-estimator weights the residuals of the 

measured data in the following way (see Eq. 6 and 

Figure 1): 

 

(6)  

 

Figure 1: Influence function for Huber-estimator 

For the residuals , which are smaller than the 

so called tuning constant c, the influence function 

equals the influence function of the least-squares 

estimator. The influence of residuals, which are 

larger than c, is limited to the value of c. For more 

information see, e.g. Hartung et al. (2009) and 

Wicki (1998). 

By applying these estimators, a non-linear 

equation system has to be solved. This can be 

achieved by using the iterative reweighted least 

squares algorithm illustrated in Figure 2 (cf. Huber 

(1981), p.179 ff.). After an initial determination of 

the parameters x, the residuals v and the variance 

factor σ (calculated by median absolute deviation 

(mad) of v) with equal weights, the algorithm enters 

a while-loop which ends when the sum of absolute 

differences in v of 2 consecutive iterations is smaller 

than a certain threshold near 0. Until then in each 

iteration new weights pi are calculated depending on 

v and σ of the previous iteration and depending on 

the influence function Ψ. The weights pi are the 

main diagonal elements of the weight matrix P. x, v 

and σ are estimated iteratively by means of the 

updated weights.   

Figure 2: Algorithm iterative reweighted least squares 

4  Methodology of knot adjustment 

Our methodology is illustrated in Figure 3. Before 

the algorithm starts, the number of control points n 

and the degree p of the basis function have to be 

chosen. As already mentioned in Section 1 this is a 

model selection problem which can be solved 

afterwards by applying an information criterion or a 

significance test to different solutions with a 

diverging number of control points or degree of 

basis function. This is not part of this work. 

Also the maximal number of iterations itermax 

has to be chosen. At the moment itermax (in this 

case: 20,000) serves as stop-criterion of our 

algorithm.  

Our algorithm offers 3 possible methods 

(“location”, “curvature”, “ranking”) to calculate the 

probability R. All methods are described in Section 

4.1. The probability calculating method pcm stores 

the selected method and has to be chosen 

previously. In case of selection of the method 

“ranking” the number of iterations with equally 

weighted R iterchance has to be chosen (see Section 

4.1). At the beginning the measured data l has to be 

parameterized (using chord length). The resulting 

location parameter are stored in Ul. 

In case of choosing “location” as pcm, R has to be 

calculated depending on Ul. In case of choosing 



 

 

 

4 

“curvature” as pcm, the curvature cur of the 

measured data has be determined and subsequently 

R has to be obtained depending on cur and Ul. 

 
Figure 3: Methodology of knot adjustment 

At the beginning of the following for-loop there 

is, in case of choosing “ranking” as pcm, an inquiry 

which checks if the actual number of iteration is 

lower or equal iterchance. In this case R is 

calculated equally weighted. If the actual number of 

iteration is larger than iterchance R is calculated 

depending on Uranking. 

In the following step, all n-p internal knots Uinternal 

are chosen randomly, but depending on R.   

Uinternal, together with the multiple start- and end-

knots, has to be arranged to the complete knot 

vector Uactual in a non-decreasing way. For the 

choice of the knots, see Section 4.2. 

In the next step the control points are estimated in 

a GMM by using Ul and Uactual. It is possible to use 

a least squares estimator as well as a robust 

estimator. For this solution the residual sum of 

squares Ωactual is calculated. Ωactual has to be 

compared with the Ω stored in the ranking Ωranking. 

When Ωactual is smaller than one or more Ωranking, 

Uactual and Ωactual are stored in the ranking and the 

result with the highest Ω in the ranking will be 

deleted. These steps are repeated until itermax is 

reached. 

When itermax is reached the knot vector Ubest 

with the smallest Ωbest is chosen out of Uranking and 

Ωranking and each internal knot of Ubest is sequentially 

modified and stored as Ubest and Ωbest when the 

resulting Ωactual is smaller than Ωbest. After 

modifying each internal knot Ubest and Ωbest are 

obtained and the algorithm ends.  

4.1  Calculation of the probability 

As already mentioned in Section 4 and depicted in 

Figure 3 we introduce 3 methods to calculate the 

probability R.  

The first method “location” calculates the 

probability out of the parameterized location 

parameter Ul of the measured data l.  

First of all, the possible span of the internal knots 

(in this case the span ranged from 0 to 1, because of 

the parameterization of the measured data) is 

divided in many (in this case: 1000) parts. For each 

part where the mean distance to the next 2 location 

parameters exceeds a certain threshold (in this case: 

0.02) the probability of this part is set to 0. In the 

other case the probability is set to 1. As a 

consequence the internal knots can only be chosen 

in areas where measured data is nearby. That means 

that internal knot spans are extreme unlikely to be 

located in data gaps, which has, due to possible 

singularities in the design matrix, negative effects 

on the appearance of the B-Spline. 

The second method “curvature” calculates the 

probability depending on curvature values of the 

measured data points. The calculation is similar to 

the calculation of the method “location” with the 

difference that the probability of the parts lying 

under the threshold is calculated as the mean 

curvature of the 5 closest measured data points. 
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The third method “ranking” calculates the 

probability depending on a ranking list Uranking of 

the knot vectors with the smallest sum of squares 

Ω. For the first iterations (in this case: iterchance = 

3000) the whole knot span is weighted equally. 

Otherwise the unwished chance that the algorithm 

converges to a local optimum increases. The knot 

vectors with the smallest Ω are stored in Uranking (in 

this case Uranking consist of the top 20 knot vectors). 

For an iteration number larger iterchance the 

probability is calculated depending on Uranking. For 

each part, where an internal knot of Uranking is 

placed, the probability for that part is increased 

inversely proportional to Ω. As a consequence the 

probability for choosing parts increases, where a 

good solutions was achieved. In order to solve the 

problem that the algorithm converges to a local 

optimum, some knot vectors were still chosen with 

an equally weighted probability.  Using the method 

“ranking”, our algorithm transforms into an 

evolutionary strategy. 

4.2  Choice of the knots 

 In order to determine knots out of the calculated 

probabilities R a resampling step, established for 

particle filter, is introduced (cf. Simon (2006), pp. 

466f.). In step 1 n-p random numbers are generated 

uniformly distributed on [0,1]. In step 2 the 

probabilities of the 1000 parts are accumulated and 

stored for each part (see Figure 4).  

Figure 4: Cumulative probability in method “ranking” (after 

last iteration) 

Finally, the part where the accumulated 

probability is greater than the randomly chosen 

number is chosen. That means that parts with low 

probabilities are unlikely to be chosen as the new 

internal knot.  

5  Results 

5.1  Knot adjustment 

In order to verify the capability of our algorithm it 

is applied to several test functions. Yoshimoto et al. 

(1999) and Gálvez et al. (2015) used the following 

functions (Eq. 7-9) which represent complex data 

with discontinuities and cusps.  

The first function represents a step function (see 

Figure 5): 

 

(7)  

 

The second function contains a discontinuity 

(comparable to a data gap, see Figure 6): 

 

 

 

(8)  

 

 

The third function contains a cusp (see Figure 7): 

 

(9)  

 

 

For each test function 201 data points are 

generated using the Uniform distribution within the 

interval U~[0,1]. All data points are perturbed by an 

additive random noise that follows the normal 

distribution N~[0,1] (cf. Gálvez et al. (2015), p. 

96f.). 

In the following Tables 1 to 3 Ωbest of the different 

probability calculating methods of the proposed 

approach are compared to Ωbest of the implemented 

clonal selection algorithm (csa) of Gálvez et al. 

(2015). κ is the number of internal knots and can be 

calculated according to Eq. 10. 

 

(10)  

 

For reason of comparability, Ωbest is calculated as 

average of 30 runs, without regarding the 5 best and 

worst runs (cf. Gálvez et al. (2015), p.98). The 

mentioned standard deviation σ is calculated out of 

all 30 runs. 

Table 1. Ωbest (±σ) for function φ1(ω) from κ=1 to κ=7  

κ location curvature ranking csa 

1 2896.99 

(±0.00) 

2896.99 

(±0.00) 

2896.99 

(±0.00) 

2896.99 

(±0.00) 

2 651.46 651.19 606.02 606.02 



 

 

 

6 

(±0.78) (±0.90) (±0.00) (±0.00) 

3 272.25 

(±0.89) 

272.39 

(±0.76) 

271.53 

(±0.01) 

271.09 

(±1.88) 

4 229.81 

(±1.67) 

229.71 

(±1.76) 

228.19 

(±0.07) 

225.84 

(±12.24) 

5 

 

6 

 

7 

217.61 

(±1.68) 

172.60 

(±2.79) 

166.86 

(±1.79) 

216.45 

(±1.06) 

171.29 

(±1.19) 

165.60 

(±1.54) 

215.74 

(±1.22) 

170.08 

(±0.40) 

163.51 

(±0.50) 

219.24 

(±6.51) 

169.69 

(±0.73) 

166.03 

(±2.95) 

 

Table 1 to 3 show that the method “ranking” 

always yields a smaller mean value for Ωbest than 

the methods “location” and “curvature”. In 

comparison to the csa the method “ranking” 

provides in the majority of the cases slightly 

smaller mean values for Ωbest. In the vast majority 

of the cases the standard deviation σ of the method 

“ranking” is significantly smaller than σ of the csa. 

Figure 5 to 7 show the solutions with the smallest 

Ωbest over 30 runs for the method “ranking”. The 

best results of the other methods weren’t displayed 

because the visual differences are too small.   

Figure 5: Best 3rd-order B-Spline fitting for function φ1(ω) 

with method “ranking” (κ = 4) 

Table 2. Ωbest (±σ) for function φ2(ω) from κ=1 to κ=17  

κ location curvature ranking csa 

1 43262.28 

(±0.00) 

43262.28 

(±0.00) 

43262.28 

(±0.00) 

43262.28 

(±0.00) 

2 23595.93 

(±1.12) 

23595.72 

(±0.27) 

23595.57 

(±0.00) 

23595.57 

(±161.74) 

3 1771.39 

(±20.18) 

1747.55 

(±11.84) 

1643.68 

(±0.00) 

1643.69 

(±0.01) 

4 1050.54 

(±23.47) 

1038.23 

(±27.82) 

998.13 

(±6.96) 

995.18 

(±2.86) 

5 834.02 

(±33.83) 

818.52 

(±16.75) 

772.96 

(±11.82) 

778.14 

(±40.79) 

6 466.34 

(±94.50) 

438.82 

(±69.66) 

354.27 

(±6.88) 

424.73 

(±160.59) 

7 207.52 

(±28.80) 

220.28 

(±24.51) 

157.59 

(±5.18) 

153.52 

(±7.98) 

8 162.83 

(±14.25) 

166.93 

(±16.26) 

139.54 

(±3.80) 

141.07 

(±7.11) 

9 137.11 

(±8.30) 

141.92 

(±10.77) 

124.49 

(±3.45) 

132.51 

(±9.32) 

10 125.14 

(±6.49) 

131.93 

(±9.05) 

112.65 

(±5.19) 

124.10 

(±9.01) 

11 115.70 

(±7.04) 

122.42 

(±8.50) 

103.17 

(±3.87) 

118.86 

(±9.08) 

12 108.01 

(±5.90) 

113.30 

(±6.34) 

99.64 

(±1.43) 

112.75 

(±10.71) 

13 103.60 

(±4.30) 

106.93 

(±6.60) 

97.03 

(±1.48) 

104.39 

(±10.22) 

14 97.23 

(±3.10) 

101.35 

(±5.25) 

93.22 

(±3.15) 

96.55 

(±6.23) 

15 94.39 

(±2.89) 

95.35 

(±3.72) 

90.39 

(±3.62) 

93.26 

(±8.06) 

16 91.49 

(±3.11) 

93.56 

(±3.94) 

85.04 

(±4.11) 

90.94 

(±6.11) 

17 89.47 

(±3.95) 

89.45 

(±3.47) 

82.21 

(±3.85) 

87.44 

(±5.06) 

 

That means the results of the method “ranking” 

are more stable than the results of the csa, which 

converge, in a not negligible amount of runs, into a 

local optimum instead of the global optimum. 

Especially for large κ our algorithm yields better 

results than the csa. 

Figure 6: Best 3rd-order B-spline fitting for function φ2(ω) 

with method “ranking” (κ = 10) 

Table 3. Ωbest (±σ) for function φ3(ω) from κ=1 to κ=17  

κ location curvature ranking csa 

1 4912.60 

(±0.01) 

4912.59 

(±0.00) 

4912.55 

(±0.00) 

4912.55 

(±0.00) 

2 2672.91 

(±0.15) 

2672.93 

(±0.25) 

2672.87 

(±0.00) 

2672.87 

(±0.00) 
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l

ˆ

ˆ

T

T

    

    

v A x l v v

v A x l v v

3 594.68 

(±1.03) 

594.39 

(±0.87) 

593.56 

(±0.05) 

593.57 

(±1.73) 

4 441.67 

(±3.69) 

439.69 

(±2.59) 

438.07 

(±8.34) 

437.60 

(±10.45) 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

15 

 

16 

 

17 

262.24 

(±10.10) 

231.87 

(±8.23) 

205.72 

(±6.19) 

185.58 

(±6.78) 

171.85 

(±3.84) 

161.70 

(±4.24) 

155.04 

(±3.36) 

148.17 

(±2.92) 

145.84 

(±2.07) 

143.15 

(±4.09) 

139.71 

(±3.96) 

132.76 

(±4.41) 

128.99 

(±4.00) 

258.80 

(±6.57) 

226.09 

(±4.85) 

202.51 

(±5.33) 

186.30 

(±5.07) 

170.65 

(±4.45) 

162.02 

(±3.77) 

155.04 

(±4.40) 

149.29 

(±3.95) 

146.21 

(±2.55) 

143.15 

(±3.87) 

141.00 

(±3.76) 

133.76 

(±4.67) 

127.85 

(±4.29) 

248.95 

(±0.26) 

215.02 

(±0.72) 

191.65 

(±0.82) 

168.72 

(±1.41) 

161.09 

(±0.57) 

150.88 

(±1.18) 

145.52 

(±2.20) 

142.10 

(±1.01) 

138.26 

(±1.93) 

128.90 

(±3.48) 

123.14 

(±1.83) 

121.37 

(±1.18) 

118.52 

(±2.98) 

242.85 

(±1.49) 

221.91 

(±7.19) 

199.57 

(±10.99) 

177.19 

(±10.87) 

164.67 

(±10.25) 

154.83 

(±6.82) 

149.20 

(±5.15) 

142.31 

(±5.28) 

142.04 

(±4.89) 

138.55 

(±5.05) 

133.35 

(±6.70) 

128.22 

(±7.61) 

126.58 

(±6.85) 

 

Figure 7: Best 3rd-order B-spline fitting for function φ3(ω) 

with method “ranking” (κ = 8) 

5.2  Robust parameter estimation 

The results shown in the previous Section 5.1 are 

obtained by a least squares estimation of the control 

points. Due to the fact that the test functions are 

perturbed by a normally distributed noise that is 

sufficient. In order to check the performance of 

robust estimation, we generated a point cloud of 

911 points out of the desired values for a rail track. 

These desired values or true values, respectively, are 

stored in the vector l . Again l  is perturbed by a 

normally distributed noise N~[0,0.067], which 

conforms with the data sheet of a usual profile 

scanner for rail track inspection. Additionally, 3 

outliers are inserted, arranged about 4 mm above the 

desired values. The resulting points are stored in l. 

Figure 8 shows the comparison between an 

estimation with least squares and the estimation 

using a robust estimator, in this case the Huber-

estimator (with the tuning constant c = 1). Both 

results are obtained using the method “ranking” for 

knot adjustment. In the area of the 3 outliers the 

least squares estimation is distorted in the direction 

of the outliers, whereas the fit using the Huber-

estimator stays closer to the data without outliers. 

Figure 8: Comparison estimation with least squares and 

Huber 

In order to validate that visual result, we 

calculated the residual sum of squares of the 

estimated parameters to the “measured” values l ( ) 

and to the true values ( ). 

 

(11) 

Table 4. Comparison of least squares and Huber-
estimation  

 least squares Huber

  86.0781 86.9692 

  43.6250 41.8616 

Table 4 shows that the estimation using the 

Huber-estimator has a smaller   thus the effect of 

the outliers is lower than using the least squares 

estimation.  
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6  Conclusion and Outlook 

In this paper we introduced an algorithm which 

determines the knot vector of a B-Spline with a 

mixture of Monte-Carlo methods and an 

evolutionary algorithm and simultaneously is robust 

against outliers. The results of knot adjustment are 

slightly better than the results of comparable 

algorithms. Especially for an increasing number of 

internal knots our algorithm yields better results. 

Furthermore the proposed algorithm produces more 

stable results, because the deviation of the results is 

significantly smaller. We also showed that robust 

parameter estimation for B-Splines obtains good 

results and is essential in case of an outlier-

contaminated point cloud. 

Beside the extension of our approach on B-Spline 

surfaces, the input and tuning parameters, as the 

chosen assumptions at probability calculation (e.g. 

size of the ranking, thresholds and partitioning), are 

going to be implemented in a closed loop 

simulation. Especially, the extension with respect to 

a more sophisticated introduction of prior 

knowledge is planned. 
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