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ABSTRACT 

Robust methods of estimation might have different foundations, necessary assumptions and hence also 

different general properties. Some robust estimators might also be applied in deformation analysis. Here, we 

consider three kinds of the robust estimates: basic M-estimators (the Huber or Tukey methods), Mp estimator  

(M-estimator based on the Pearson distribution family) and finally R-estimator (weighted Hodges-Lehmann 

estimator). Note, that the first two estimators belong to the same family of M-estimation; however, their 

theoretical assumptions differ much from each other. The last estimator considered here has completely 

different foundations (it is based on the rank tests), and hence it has different properties. To describe the 

properties of the estimators one can apply different ways or measures. The influence function is one of the most 

important and popular way to describe such estimators and it is also very useful while designing new estimators. 

Such a function provides just general information; however, from the practical point of view it is also important 

to know how the estimates behave in the case of a particular observation structure. Hence, it is also very 

advisable to analyze the empirical influence functions (EIFs) which might describe the behavior of estimates 

from many points of view and for various disturbances within the observation set. The paper presents EIFs 

obtained for different variants of disturbing errors which might occur in deformation analysis. They show that it 

is difficult to flag the best, “most universal” estimation method, and the choice of the most convenient method 

is sometime just impossible.  
 

I. INTRODUCTION 

There is no doubt that the least squares method (LS) 
is the most popular estimation method which is applied 
in geodesy or surveying. This is due to its simplicity but 
also well-known theoretical properties, just for 
example, LS estimates are BLUE (best linear unbiased 
estimates) or MVUE (minimum variance unbiased 
estimates) if only measurement errors are normally 
distributed. On the other hand, LS estimates are not 
robust against outlying observations (e.g., Prószyński, 
1997; Baselga, 2007; Duchnowski, 2011) and hence 
there is a need for other estimators which are robust. 
We usually assume that outlying observations are just 
observations affected by gross errors; however, outliers 
might have different origins (e.g., Duchnowski, 2011; 
Duchnowski and Wiśniewski, 2017a). Robustness is also 
important in deformation analysis where outliers might 
result, for example, from instability of some reference 
points (Duchnowski, 2011). There are several different 
classes of robust estimation, and hence several 
different approaches to robust estimation (e.g., Huber, 
1981). The most popular robust methods, which are 
applied in geodetic or surveying problems, usually 
belong to the class of robust M-estimation, and the 
respective optimization problem itself is usually solved 

by applying IRLS algorithms (iteratively reweighted least 
squares). Here, one can list many methods, such as 
Huber’s, Hampel’s, Tukey’s or Danish method. The 
other variant of M-estimation was proposed in 
(Wiśniewski, 2014). It is based on the particular 
probabilistic models of observation errors, namely 
Pearson’s distributions. This allows us to consider both 
leptokurtic and platykurtic distributions in such a 

context. Note, that M  estimation as well as its 

respective estimates (here called MPEs) have shown 
some robustness against outliers (Wiśniewski, 2014; 
Duchnowski and Wiśniewski, 2017a).     

The other approach to robust estimation is applied in 
the case of R-estimation. The estimators of such a class 
are generally based on rank tests or specially defined 
score functions. The basic R-estimates are called 
Hodges-Lehmann estimates (HLE), and Duchnowski 
(2013) proposed another variant which was called 
weighted Hodges-Lehmann estimator (HLWE), and 
which can also accept observations of different 
accuracy. The estimators in question can be applied in 
deformation analysis (see, Duchnowski, 2010; 2013) or 
in other geodetic problems (for example, Kargoll, 2005). 
It is also worth noting that HLWEs (or respective HLEs) 
might have higher accuracy than classical LSEs (see, 
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Duchnowski and Wiśniewski, 2017b). This concerns 
especially observation sets which empirical excess 
kurtosis is positive (in other words, observation errors 
have leptokurtic distribution). Similar conclusion also 
concerns MPEs (Duchnowski and Wyszkowska, 2017). 

We can apply many measures or ways to investigate 
a robust method. The basic and most important 
information about the method properties stem from its 
breakdown points and influence functions. It is worth 
emphasizing that such general information about the 
method is not enough sometimes. The specific features 
of the method can be investigated by applying empirical 
breakdown points or empirical influence functions (see, 
for example, Rousseeuw and Verboven, 2002; 
Duchnowski and Wiśniewski, 2017a). This allows us to 
understand how a method behaves in the case of a 
particular observation structure (a geodetic network, 
measurement epochs). This paper is focused on the 
empirical influence functions (EIFs) of the earlier 
mentioned estimators, namely robust M-estimates, 
MPEs and HLWEs. In the case of M-estimation we have 
chosen two methods: Huber’s and Tukey’s one, which 
differ from each other in the shape of the influence 
function. Most of all, Tukey’s biweight function has 
symmetric finite rejection points. The main goal of the 
paper is to show an example computation for EIFs of 
different estimates for a chosen simulated levelling 
network. It might help us to decide which method will 
be most suitable for a particular problem or a particular 
disturbance of an observation set. 

II. MODELS AND THEORETICAL ASSUMPTIONS 

Let us assume the following classical functional model 
of geodetic observations 

 
 y AX+ v=   (1) 

 

where: 1[ , , ]Tny y=y  is an observation vector,  

1[ , , ]Tnv v=v  is a vector of random measurement 

errors, X is a parameter vector, A is a known matrix of 
coefficients. Let all observations have the same 
accuracy, and their assumed standard deviation 
 = 1 mm, hence the weight matrix of observations is 
equal to the identity matrix. Then the LS estimate of the 
parameter vector can be written as 
 

 ( )
1

X̂ A A A y
T T

LS

−
=  (2) 

 
The very similar equation can be written for all  
M-estimators, namely 
 

 ( )( ) ( )
1

ˆ ˆ ˆX A W v A A W v y
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M

−
=  (3) 

 

where: ( )ˆW v  is a diagonal matrix which diagonal 

elements ( )ˆ ˆ( )W v iii
w v=   , and ˆ( )iw v  is a weight 

function related to the particular method, îv  is a 

standardized error of the ith observation. Note, that 
solution presented here is an iterative process which 
ends when the parameter vector is not changing 
between the iteration steps any more (or the change is 
smaller than the assumed tolerance). Considering the 
assumption presented here, the weight function of the 
Huber method can be written as (for example, Gui and 
Zhang, 1998; Baselga, 2007) 
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a is a positive constant (usually assumed between 1.5 
and 3.5). In the case of the Tukey method we have 
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where this time the constant a is usually equal to or 
lower than 6. In the case of MP estimation, the weight 
function is related to the respective probabilistic model. 
In such a context, the Pearson distribution system 
seems very useful since it allows us to apply the known 
(or estimated) kurtosis and/or asymmetry of 
observation errors. Here, we assume that an error 
distribution is symmetric and leptokurtic. In such a case, 
the weight function can be based on Pearson’s 
distribution of the type VII (Wiśniewski, 2014). MP 
estimation requires information about kurtosis of the 
measurement errors. One can apply known value of 
that parameter or estimate it from the observation sets 
(using, for example, empirical moments). However, if 
we assume an inflated value of the kurtosis then the 
method might accept also outlying observations, hence 
the estimation results would not be affected by such 
observations (Wiśniewski, 2014; Duchnowski and 
Wiśniewski, 2017a). Considering application of all 
methods presented here in deformation analysis, we 
can just estimate point coordinates at all measurement 
epochs separately. By subtracting the respective 
coordinate estimates we can assess displacement of all 
object points. Note, that such an approach is the basic 
one, and other methods can be found in (e.g., 
Hekimoglu et al. 2010).  

The last robust estimation method which is 
considered here is R-estimation. In deformation 
analysis, we can apply the basic R-estimator of the shift 
which is a natural estimate of coordinate changes 
between measurement epochs (Duchnowski, 2010; 
2013). Since geodetic observations might have different 
accuracy, application of the weighted Hodges-Lehmann 
estimates (HLWE), which were proposed by 
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Duchnowski (2013), are especially advisable. The 
general form of that estimator can be written as follows 

 

 ( )ˆ HLW

i jmedw y x = −  (6) 

 
where: medw is a weighted median operator (the ways 
of the weighted median calculation can be found in 
(e.g., Gurwitz, 1990; Duchnowski, 2013)). Considering 
application in deformation analysis, yi and xj are 
coordinates of a particular point which are computed 
independently at the second or first measurement 
epoch, respectively (the basis for such coordinates are 
measurements at respective epoch and coordinates of 
the reference points). Note, that for a particular point, 
there are always several ways to compute its 
coordinates independently. The number of such ways is 
always limited; hence we never use all measurements 
for computing each point coordinates. We can also 
apply the variant of HLWE proposed in (Wyszkowska 
and Duchnowski, 2018). In such a variant more 
measurements are applied for each point, and hence 
the estimate is more reliable and accurate. For example, 
in the case of levelling network some height differences 
can be computed in several independent ways. In the 
variant of HLWE in question, one can compute the 
necessary height differences as an average of such 
ways. Note, that the final heights of the particular point, 
which are applied in Eq. (6), should still be independent. 

Let us now consider the most appropriate form of an 
empirical influence function in the context of the paper 
goal.  Such a function can be defined in several different 
variants depending on the assumed functional model or 
the way of gross errors occurrence (e.g., Rousseeuw 
and Verboven, 2002; Duchnowski, 2011; Duchnowski 
and Wyszkowska, 2018). Here, the following form 
seems the most appropriate 

 

 
1 1 2 2EIF( ) ( , )y + g y + gnx T=  (7) 

 

where: 
nT is a tested estimator, yi

 are observation 

vectors, gi are vectors including gross errors at the 
respective epoch. Note, that the variable x appears only 

in g2. Thus, we propose the following structure of the 
gross error vectors 
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where: ilg  stays constant for each computed EIF, and 

x = xk  varies from -25 mm to 25 mm and it affects only 
the kth observation at the second epoch. Note, that in 
the case of the conventional EIF all values ilg are equal 

to zero. However, if one wants to investigate how the 
estimator behaves in the occurrence of multiple gross 
errors then some ilg  should be non-zero. 

  

III. EMPIRICAL TESTS 

Let us consider a leveling network presented in Fig. 1 
which is established to test vertical displacements of the 
object points 1, 2 and 3. Let the network be measured 
at two different measurement epochs and let standard 
deviation of all measurements 

ih =  1.0 mm.  Let us 

now simulate the vectors of random errors for the both 
epochs as follows (all in mm) 
 

 
 

 

1

2

0.5 0.8 2.3 3.1 1.4 0.8 0.7

1.0 1.8 0.0 0.1 1.4 1.0 0.2

v

v

T

T

= − − − −

= − −
(9) 

 
We assume that all reference points are stable, and the 
object points are displaced between the measurement 
epoch. Here, we take 1H = 10 mm; 2H = -20 mm; 

3H = 5 mm.  

Such assumptions allow us to compute EIFs for 
several different variants of the vectors gi. They are also 
useful for assessing the most suitable values of the 
steering parameters, namely a for the Huber or Tukey 
methods, and   (simulated kurtosis) for MP method. 

The respective EIF (obtained for x = x1) for the first two 
methods are presented in Fig. 2 and 3. The figures show 
that for different values of a we can obtain little bit 
different shapes of EIFs. Since we want the methods to 
be robust against outliers, we should take such a for 
which EIF is bounded. On the other hand, the EIFs 
should be quite “smooth” not to be influenced much by 
the particular simulated vectors of the random errors, 
Eq. (9). For the Huber method for a = 2.5 EIFs are 
unbounded (in fact they are the same as for LS method). 
Thus, for that method we take a = 2. As for the Tukey 
method for a < 3 EIFs are not “smooth” for relatively 
small absolute values. Thus, the choice of a = 3 seems 
the most appropriate (EIFs are “smooth” and seem 
bounded at least for the considered values of x).   
 

 
Figure 1. Tested levelling network 
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Figure 2. EIFs of the Huber estimates for different a 

 
The example presented here shows that EIFs can be also 
useful when assuming the value of the constant a which 
is the most appropriate for a particular network or, 
more generally, a geodetic observation set. The other 
ways of computing or assuming such a value can be 
found in (e.g., Gui and Zhang, 1998; Berber and 
Hekimoglu, 2003).  As for MP method, all EIFs which are 

obtained for different (3, 15   are very similar for 

one another, hence we do not present them here.  We 
finally decide to assume that 15 =  which allows the 

method to accept outlying observations with the bigger 
random errors (see, Wiśniewski, 2014). Note, that such 
a large kurtosis is just unusually in practice. In the case 
geodetic or surveying observation sets   is usually 

lower than 4 and very seldom higher than 8 (see, e.g., 
Wiśniewski, 2014). Here, it does not reflect the nature 
of the observation set but is chosen to make MP 
estimation robust against outliers.   

Now, let us assume several different variants of the 
gross error vectors and discuss how the estimators 
under investigation behave in the occurrence of a single  
 

 
Figure 3. EIFs of the Tukey estimates for different a 

 
or multiple gross errors. The variants differ from each 
other in the location of the varying xk (different k) and 

location of constant gross errors ilg . Note, that in the 

following description of the variants we indicate only 

non-zero ilg . 

  
A. Variant: k = 1 

Fig. 4 presents EIFs which are obtained for all 
estimators. It is clear, that respective EIFs obtained for 
different points and the same estimation methods are 
similar to one another; however, some discrepancies 
are also vivid. The most evident finding is that EIFs of 
MP method are not bounded, hence the method is 
generally not robust. Nonetheless, EIFs of MP estimates 
are similar to the other EIFs for small values of x = x1  

(from -5 to 5 mm). Moreover, EIFs of R-estimates are 
similar to EIFs of the Tukey method. It is also evident 
that the Huber estimates are most robust, their EIFs are 
the closest to the simulated values of the displacements 
for all object points. 
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B. Variant: k = 1, 27g = 0.01 m 

EIFs of that variant are presented in Fig. 5. In the case 
of multiple gross errors, EIFs have more complicated 
shapes and their value spread is larger. This reflects the 
negative influence of outliers on the estimated values. 
Generally, if the absolute value of x = x1 is the biggest 
then the results of all estimation methods are 
unsatisfactory (they are far from the theoretical values). 
In the case of the point 1 all EIFs are very similar to each 
other. For the point 2, EIF of HLWE has the biggest value 
range. On the other hand, that estimate is not 
influenced by the negative x = x1 (such a property is 

natural for R-estimates (see, Duchnowski, 2011)). For 
the point 3, HLWE is the best and its EIF is almost 
constant for all considered here values of x = x1. 

 

C. Variant: k = 1, 17g = 0.01 m, 27g = 0.01 m 

This time we simulate occurrence of outliers in both 
measurement epochs. The respective EIFs are 
presented in Fig. 6. The comparison between EIFs in 
Fig. 5 and Fig. 6 seems especially interesting. It shows 
that the respective EIFs of HLWE differ from each other 
most. What is more, when there is an additional outlier 
at the first measurement epoch, then HLWEs are 
generally less affected by all outliers (see, especially 
 

 
Figure 4. EIFs for variant A 

points 1 and 2). As for the rest of the estimates, EIFs are 
a little bit changed and usually the additional outlier at 
the first epoch worsens the estimation results. It is also 
worth noting than for many values of x = x1 MP 
estimation is less affected by the outliers than both 
robust M-estimates. 
 

D.  Variant: k = 4 

In that variant, the observation h4 at the second 
epoch is outlying. Thus, we check how location of  
a single outlier affects EIFs of the estimates under 
investigation. The respective EIFs are presented in  
Fig. 7. It is advisable to compare such EIFs with EIFs 
presented in Fig. 4 and related to the first variant with 
only one outlier too. It is clear that only for the point 3 
respective EIFs obtained for the same types of estimates 
are similar to each other. The shapes of EIFs for the 
points 1 and 2 are quite different at both variants, 
respectively (it concerns especially the point 1). The 
location of outlier is the reason, here. The observation 
h4 is located relatively far from the point 1, hence it has 
much lower impact on the estimation of that point 
displacement. It is also worth noting that all estimation 
methods yield almost the same results; however, MP 
estimate is better than the rest.  On the other hand, for 

   - 

  
Figure 5. EIFs for variant B 
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Figure 6. EIFs for variant C 

 
the points 2 and 3, such an estimator shows almost no 
robustness and the respective estimates are strongly 
affected by the outlier. 

 

IV. DISCUSSION 

The main goal of the paper was to present general 
properties of several robust methods by computing 
empirical influence functions for several different 
variants on the number and location of outliers. The 
tested network is relatively small, thus in fact all robust 
methods can withstand only one outlier (one can say 
that it is their empirical breakdown point). The 
respective EIFs show that almost always they break 
down when there are two outlying observations. HLWE 
seems to be an exception here; however, it stays robust 
only in the case of one object point. Such knowledge is 
also useful from the practical point of view. By 
computing and comparing the respective EIFs, one can 
predict which estimates of object point displacements 
are mostly exposed to the bad influence of outliers. In 
some sense it is similar to the analysis of network 
reliability (Prószyński 1997). 

The comparison between EIFs for different estimates 
shows that it is hard to point out the best estimator (the  

 
Figure 6. EIFs for variant D 

 
estimate which is the most robust or which values are 
affected by outliers least). In the case of a single outlier 
(Variants A and D), the Huber estimates seem to be the 
best choice. For the multiple outliers all estimates at 
hand break down, and only HLWEs can provide 
satisfactory results. Note, that even if the results are 
affected by outliers, the estimated displacements are 
always relatively far from the simulated one. Thus, we 
can always conclude that all object points are not 
stable. 

 MP estimates seem to be the least robust or not 
robust at all, and hence they are the most sensitive to 
outliers. However, there are also some cases in which 
such estimates provide results that are very similar (or 
even better) to the results of the other methods. Note, 
that MP estimate can be more robust if one applies 
asymmetry coefficient during the estimation process 
(see, Wiśniewski, 2014; Duchnowski and Wiśniewski, 
2017a). 

 

V. CONCLUSIONS 

The paper shows some comparisons between 
methods which present different approaches to 
robustness against outliers and their basic application in 
deformation analysis. Note, that the methods chosen  
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here have not been compared with each other in such a 
context yet. The collation of findings points out that the 
Huber’s or HLW estimates are the most advisable and 
useful from the practical point of view.  

The empirical analyses show that the shapes of EIFs 
for the presented methods differ from each other in the 
case of a single outlier, and they are more similar for the 
multiple gross errors. Note, that EIFs for the same 
method might vary between different network points 
(different estimated parameters). Thus, EIFs might 
describe how the estimates behave in the case of 
particular observation set, network or estimation 
problem. That is the advantage of EIF over the 
theoretical influence function (IF) which provides only 
general information about the estimation method. 

The paper presents also another application of EIFs. 
Such functions might be useful when one chooses 
values of the steering parameters for some robust 
methods. Note, that only HLWE does not need any 
assumption in that context. The assumption of an 
inappropriate values of parameters might lead to the 
loss of robustness (usually, a method cannot identify 
outliers). We can also use the steering parameters 
which results from the theoretical analysis of the 
method properties. However, by applying EIFs one can 
choose the best values of the steering parameters 
which are related to the particular network or other 
observation structure.  
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