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SUMMARY 
 
Hyperspectral Images are worthwhile data for many processing algorithms (e.g. Dimensionality 
Reduction, Target Detection, Change Detection, Classification and Unmixing). Target detection 
is a key issue in processing hyperspectral images. Spectral-identification-based algorithms are 
sensitive to spectral variability and noise in acquisition. In most cases, both the target spatial 
distributions and the spectral signatures are unknown, so each pixel is separately tested and 
appears as a target when it significantly differs from the background. On the other hand, there are 
many (e.g. Modified Spectral Angle Similarity (MSAS) as a Deterministic and Covariance-based 
Matched Filter Measure (CMFM) as sub-pixel approach) algorithms for target detection. As a 
new algorithm, Support Vector Machine (SVM) is a useful technique for Target Detection. 
 
In this paper, first we propose a theoretical discussion aimed at understanding and assessing the 
potentialities of MSAS, CMFM and SVM algorithms in hyper-dimensional feature spaces. Then, 
we assess the effectiveness of SVM with respect to conventional. To sustain such an analysis, the 
performance of SVM is compared with those of two other Target Detection algorithms, one-
against-all, the one-against-one. Finally, Different performance indicators have been used to 
support our experimental studies in a detailed and accurate way (i.e., Target Detection accuracy, 
the computational time, the stability to parameter setting).  
 
The results obtained on a real Visible/Infrared Imaging Spectroradiometer hyperspectral dataset 
(CASI) allow concluding that, SVM is a valid and effective alternative to conventional Target 
Detection algorithms of hyperspectral remote sensing data. 
 

  چکيده
  

 ساخت و طراحي در پيشرفت اين. است داشته چشمگيري پيشرفت گذشته دھه دو در فراطيفي، دور از سنجش آوريفن
 تصاوير با مقايسه در. است بوده مشھود بسيار ھا،داده پردازش ھايروش سازيپياده و توسعه در ھمچنين و ھاسنجنده

 به نسبت پيکسل ھر به مربوط طيفي منحني رو اين از بوده ا(تريب طيفي حدتفکيک داراي فراطيفي تصاوير چندطيفي،
 مناسبي منبع عنوان به توانمي تصاويرفراطيفي از بنابراين باشد،مي ترپيوسته تصاويرچندطيفي ھايپيکسل طيفي منحني
  . نمود استفاده مواد بردارينقشه جھت

 آناليز ترپيشرفته و نوين روشھاي که است شده باعث راطيفيف ھايسنجنده از حاصل ھايداده ھايپيچيدگي و ھاويژگي
 از يکي گيرند، قرار توجه مورد فراطيفي ھايداده از کاملتر و دقيقتر اط2عات استخراج منظور به دور از سنجش تصاوير
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 تصاوير رد ھدف آشکارسازي روشھاي. است ھدف  آشکارسازي شود،مي انجام فراطيفي تصاوير روي بر که آناليزھايي
 منظور این برای مختلفی ھایالگوریتم.گيردمي صورت طيفي اط2عات و ھاويژگي اساس بر معمو(ً  فراطيفي،
  .کرد اشاره ک سيک غير و ک سيک الگوریتمھای دسته به توان می آنھا جمله از که دارد وجود
 بر مبتنی انطباقی گيریدازهان طيفی، زاویه گيریاندازه الگوریتم سه به راجع ابتدا مقاله این در

 سایر با پشتيبان بردار ماشين الگوریتم سپس شده بيان مطالبی پشتيبان بردار ماشين و کواریانس
. گردید سازی پياده CASI فراطيفی تصویر روی بر مربوطه ھای بررسی  و گشته مقایسه ھاالگوریتم

   دھد. دار پشتيبان را نشان ميبر ماشين ايم2حظه قابل دقت بھبود شده انجام ھايبررسي
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1. INTRODUCTION 
 
Recent advances in hyperspectral sensors with high spectral and spatial resolution have led to an 
increased interest in exploiting spectral imagery for target detection. Given the availability of 
spectral libraries for a wide range of materials, detection algorithms that exploit a known target 
signature have been widely investigated. It has been shown (Scharf and Friedlander, 1994) that 
such algorithms are dependent on the degree of signal mismatch between the spectral libraries 
and the spectra observed in an image.  
 
Automatic target recognition (ATR) has experienced significant strides with the advent of 
hyperspectral imaging (HSI) sensors. ATR systems should be able to detect, classify, recognize, 
and/or identify targets in an environment where the background is cluttered and targets are at 
long distances and may be partially occluded, degraded by weather, or camouflaged (Yamany, 
Farag and Hsu, 1999). HSI sensors provide plenty of spectral information to uniquely identify 
materials by their reflectance spectra. A material’s reflectance spectrum contains the reflectance 
values of the material as a function of wavelength. Although it is theoretically possible for two 
completely different materials to exhibit the same spectral signature, targets in ATR applications 
are typically man-made objects with spectra that differ considerably from the spectra of natural 
background materials (Manolakis and Shaw, 2002). 
 
In HSI target detection applications, the targets are sparse and typically occupy less than 1% of 
the total pixels in a hyperspectral (HS) scene, rendering traditional spatial processing techniques 
impractical. Consequently, most HSI detection algorithms exploit the spectral information of the 
scene, an approach known as nonliteral exploitation in the HSI literature (Manolakis, Marden and 
Shaw, 2003). One of the main challenges in HSI processing is spectral variability, which refers to 
the phenomenon that the spectra measured from samples of the same material will never be 
identical. In other words, spectra of the same material are not fixed due to the inherent variations 
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present in the material. Further spectral variability is introduced by external factors such as 
atmospheric conditions, sensor noise, and illumination variations (Shaw and Burke, 2003). 
 
Although many detection algorithms have been developed over the years, spectral variability 
poses challenges for these algorithms. While the stochastic detectors are mathematically tractable 
and can work well in some situations, they are only optimal under the assumption of the 
multivariate normality of the data. The quadratic Neyman–Pearson detector requires the 
covariance matrix of the target class, which is not available if one is given a single spectral 
signature obtained from a library (Vapnik, 1998). In real-life scenarios, the multivariate normality 
assumption is often violated because an HS image may contain multiple types of terrain, thus 
causing detection performance to suffer (Henz and Wagner, 1997). 
 
Kernel methods have become increasingly popular in a variety of pattern recognition (PR) 
applications. The recently-developed support vector machine (SVM) has its roots in statistical 
learning theory and is an emerging nonparametric approach for describing a set of data (Tax and 
Duin, 2004). It has been successfully applied in the areas of facial expression analysis, gene 
expression data clustering, image retrieval and remote sensing image classification. 
 
In this letter, we will use the SVM to perform target detection in HS imagery. Experiments on 
urban HSI scenery confirm that the proposed SVM-based method can provide substantially lower 
false positive rates (FPRs) while maintaining higher true positive rates (TPRs) when compared to 
other detectors. Section II provides formulation of methods. Section III provides Accuracy 
Evaluation Method. Section IV provides the experiments and results, and conclusions and future 
work are discussed in Section V. 
 
2. SUGGESTED METHODS  
 
2.1 Modified Spectral Angle Similarity (MSAS) 
 
Given two vectors as the target and pixel spectra, a spectral angle between this pair of vectors can 
be defined. In the case of a hyperspectral image, the "hyper-angle" is calculated with: 
                                                                                                                                                     Eq.1 
 
 
The smaller angle means more similarity between the pixel and target spectra.  Here, we prefer to 
use a modified spectral angle. In above equation α  is between 0 and π/2, so we can easily obtain, 

MSAS=
π
α2

 , by this rescaling the values of measure convert to [0, 1]. 

 
2.2 Covariance-based Matched Filter Measure (CMFM) 
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Covariance-based Matched Filter Measure, CMFM, is one of the anomaly detection methods. 
The aim of anomaly detection is to search and find unknown targets with low probability of 
existence in the image. The anomaly detection works based on properties of covariance or 
correlation matrix of the target.  
 
In Eq. 2. CMFM measures similarity of targets si and sj (s includes spectral properties) after 
reducing their meanµ . More similarity value means both targets are members of same class in 
higher probability.  

)()( 1 µµ −−= −
× jLL

T
i sKsCMFM                                                                                                  Eq.2 

 
In which, 1−

×LLK is inverse of image covariance matrix and L is number of image bands. For pixel 
with CMFM value closer to unit, it means the pixel is more similar to the target.   
 
2.3 Support Vector Machine (SVM) 
 
We will first define the hard margin SVM, applicable to a linearly separable dataset, and then 
modify it to handle non-separable data. The maximum margin classier is the discriminate 
function that maximizes the geometric margin 

w

1  which is equivalent to minimizing 2
w . This 

leads to the following constrained optimization problem: bwimize ,min  
2

2

1
w Subject to:      

nibxwy i
T

i ,...,11)( =≥+ .The constraints in this formulation ensure that the maximum margin 

classier classifies each example correctly, which is possible since we assumed that the data is 
linearly separable. In practice, data is often not linearly separable; and even if it is, a greater 
margin can be achieved by allowing the classier to misclassify some points. To allow errors we 
replace the inequality constraints with nibxwy ii

T
i ,...,11)( =−≥+ ξ  Where 0≥iξ  are slack 

variables that allow an example to be in the margin ( 10 ≤≤ iξ , also called a margin error) or to 

be misclassified ( 1>iξ ). Since an example is misclassified if the value of its slack variable is 

greater than 1,∑i iξ  is a bound on the number of misclassified examples. Our objective of 

maximizing the margin, i.e. minimizing 
2

2

1
w will be augmented with a term ∑i iC ξ to penalize 

misclassification and margin errors. The optimization problem now becomes: bwimize ,min    

∑ =
+ n

i iCw
1

2

2

1 ξ Subject to: 01)( ≥−≥+ iii
T

i bxwy ξξ .The constant C > 0 sets the relative 

importance of maximizing the margin and minimizing the amount of slack. This formulation is 
called the soft-margin SVM, and was introduced by Cortes and Vapnik (Sch olkopf and Smola, 
2002). Using the method of Lagrange multipliers, we can obtain the dual formulation which is 
expressed in terms of variables iα (Cristianini and Shawe-Taylor, 2000): 
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The dual formulation leads to an expansion of the weight vector in terms of the input examples:
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The examples ix  for which 0>iα  are those points that are on the margin or 

within the margin when a soft-margin SVM is used. These are the so-called support vectors. The 
expansion in terms of the support vectors is often sparse, and the level of sparsity (fraction of the 
data serving as support vectors) is an upper bound on the error rate of the classier (Cortes and 
Vapnik, 1995). 
 
The dual formulation of the SVM optimization problem depends on the data only through dot 
products. The dot product can therefore be replaced with a non-linear kernel function, thereby 
performing large margin separation in the feature-space of the kernel. The SVM optimization 
problem was traditionally solved in the dual formulation, and only recently it was shown that the 
primal formulation, can lead to efficient kernel-based learning (DeCoste and Weston 2007). 
 
3. ACCURACY EVALUATION METHOD  
 
For decision making to separate target from non target pixels, a threshold is necessary. One  of  
most  reliable  way  to  find  a threshold  is  using  Receiver  Operating  Characteristic  (ROC) 
Curves.  It has been used with the Neyman-Pearson method in signal detection theory.  It  can  be  
used  to visualize  a  classifier  performance  in order  to  select  the proper decision  threshold.  
The ROC Curves compare a series of similarity image classification results for different threshold 
values with ground truth information. Aprobability of detection (Pd)  versus  a  probability  of  
false  alarm  (Pfa)  curve  and  a  Pd versus  a  threshold  curve  are  reported  for  each  selected  
class (rule band).   
 
For calculating of ROC curves, Confusion Matrix is needed. A confusion  matrix  is  a  form  of  
contingency  table  showing  the differences between  the ground  true data and classified images 
and  it  is  computed  by  cross  tabulation  technique.  In  case of  a single  class  classification or  
target  detection  we  obtain  a confusion matrix such as given on Table 1.  
 

Table 1:  A Confusion Matrix for Target Detection Case 
 

Confusion Matrix 
Classified Classes   

0 1 sum 
True  

Classes  
0  Tn  Fp  Cn 
1 Fn Tp Cp 

 sum Rn Rp N 
 
The elements of this matrix are defined as:  
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Cn=Tn+Fp; Cp=Fn+Tn; Rn=Tn+Fn; Rp=Fp+Tp; Cn+Cp=Rn+Rp=N 
 
Tn (true negative) is the number of non target pixels which are correctly classified as non target. 
P (Tn) is its probability or rate as calculated using:  P (Tn)=Tn/Cn.  
 
Tp  (true  positive)  is  the  number  of  target  pixels  which  are correctly  classified  as  target  
and  P(Tp)  is  its  rate  as  obtained using:  P(Tp)=Tp/Cp.  It is also called probability of 
detection: Pd.  
 
Fp (false positive)  is  the number of non target pixels which are incorrectly  classified  as  target  
and  P(Fp)  is  its  probability  as calculated  by:  P(Fp)=Fp/Cn.  It is also called probability of 
false alarm: Pfa.  
 
Fn  (false  negative)  is  the  number  of  target  pixels  which  are incorrectly classified as non 
target and P(Fn) is its probability as calculatedby:  P(Fn)=Fn/Cp.  
 
This  matrix  and  its  elements  must  be  calculated  for  a  set  of thresholds.  In practice we fix a 
number of thresholds between the minimum and maximum values of rule data. Then, for each 
threshold, a Pd and Pfa could be calculated. With each triple of (thr, Pd, Pfa) we can plot  two 
curves: A ROC that contains the Pd  against  the  Pfa  and  another  curve  that  contains  the  Pd 
against the threshold. An example of ROC curves are presented on Figure 1. 
 

 
Figure1: Curves (1) probability of detection versus probability of false alarm and (2) probability of detection 
versus threshold 
 
4. EXPERIMENTS  
 
4.1 HSI Data 
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The above techniques are applied to CASI (Compact Airborne Spectrographic Imager) 
hyperspectral images. CASI has a flexible spectral resolution capability. It means that the image 
data may have different numbers of bands, maximum 288. These numbers of bans cover a rang 
from 0.4 to 1.0 µm of electromagnetic spectrum, so the wide of each bands is about 10 µm. 
Spatial resolution of CASI is a function of its IFOV and altitude of airborne platform. It can vary 
from 1 to 10 meters. Dynamic rang of sensor is another parameter which produce the image data 
with 12 bits or 4096 gray levels. CASI also is equipped by GPS and INS for In/Off fly 
rectification and geo-referencing of images. The data in this test is one set of CASI image. The 
spatial resolution of image is 2m and the number of bands for this image is fixed to 32 channels.  
 

a b c 
Figure 2: (a) the false color CASI image of study area (R=0.914, G=0.620, B=0.451), (b) Ground truth data for 
accuracy evaluation, (c) The extracted spectra of building material  
 
4.2 Experimental Results 
 
For applying the techniques, we have selected a test image on the same area containing man-
made objects like’s roads, buildings and green spaces. It includes a 128X128 pixels image with 
32 bands and a spatial resolution of 2 meters, (Figure 2-(a)). A target spectrum of building 
materials has been extracted by collecting and averaging the spectra of manually selected pixels 
for sample data (Figure 2-(c)). 
  
The result maps for each method have been obtained (Figure 3). To compare and evaluate the 
results, we extracted a true data map by visual interpretation of the building materials of the scene 
(Figure 2-(b)). For a quantitative evaluation of the results, we retain two elements of the 
confusion matrix: the overall accuracy (OA), and the kappa coefficient (K). The overall accuracy 
is calculated by summing the number of both target and non target pixels correctly classified and 
dividing by the total number of pixels. Because the OA is not a very complete and reliable 
criterion, the Kappa coefficient is computed with other elements of the confusion matrix 
(Alimohammadi, 1998). 
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1 2 3 
Figure 3: the resultant images of algorithms actions: (1) MSAS, (2) CMFM, (3) SVM 

 
It is visible that the SVM provides the less noisy results. From Table 2, we can observe that the 
two quality criteria for this method are better than four other approaches. In all result maps, there 
are some identified pixels which are relatively similar to target but not completely. For MSAS 
method, the target maps have a lot of mismatching. The CMFM results are more precise for this 
purpose.  
 

Table 2: computed quantities in assessing the experiments accuracy 
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MSAS 0.91 0.78 
MCMF 0.95 0.83 

SVM 0.98 0.91 
 
5. CONCLUSION 
 
This work shows that it is possible to extract from hyperspectral data very important information, 
useful for the environmental characterization of urban areas. Even if in its preliminary stages, this 
research has shown many potentialities for urban remote sensing. We have applied the SVM for 
target detection in HSI. Experiments on urban HSI scenery illustrate that the SVM-based detector 
can provide higher TPRs and substantially lower FPRs than other methods in varying scenarios 
of target spectral variability.  
 
Future work, we intend to investigate a more efficient selection of the kernel parameter s rather 
than performing a linear search over all the candidate s values. The selection of features that 
maximize separability is crucial in PR systems. Because of their success in a variety of PR 
applications, we will investigate the potential of the discrete wavelet transform coefficients as 
features in the context of SVM-based HSI target detection. 
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