Helsinki Finland

29 May - 2 June 2017

Towards the influence of the angle of incidence and the surface roughness on distances in terrestrial laser scanning

M. Zámečníková and H. Neuner

May 2017

Surveying the world of tomorrow -From digitalisation to augmented reality

Surveying the world of tomorrow -

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Motivation and relation to deformation monitoring

Separation of real object deformations from apparent deformations caused by variating systematic influences.

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Motivation and relation to deformation monitoring

 Scanning from a second station causes a different impact of the systematics on the determined geometry.

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

- TLS: The beam reflected on the object surface
 ⇒ obtaining distance measurement
 ⇒ results are influenced by measurement configuration and surface properties
- Measurement configuration: Incidence angle (IA)
- Traditional definition

Reference	Nature	Measure
Linstaedt et al., 2009	systematic	Variation of displacement of a scanned surface from reference points
Gordon, B., 2008	systematic stochastic	3D-accuracy – point standard deviation
Soudarissanane, S. et al., 2011	stochastic	Standard deviation of the residuals of an approximated plane in the distance direction

Platinum Sponsors:

Laser beam cone

IA

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Surface properties: Roughness

 Alternative perspective: combined influence of IA and roughness

Laser beam cone

- <u>Aim of the research:</u>
 - a) Identification of a possible joint influence of the incidence angle and of the surface roughness on the resulting distance measurement.
 - b) Specification of the nature of the combined influence (systematic/stochastic)

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Measurement instrument Leica MS50 (TLS+TS) σ_{RL} =2 mm+2 ppm

Measured object

3 plates Material – granite Dimension - 40x40 cm Roughness levels: smooth (s), rough (r), very rough (vr) IA setting - angle scale; rotation w.r.t. the vertical axes

Measuring room

Laboratory

Parameters:

 $IA - (19) \rightarrow 0, \pm (10,20,30,35,40,45,50,55,60)$ gon Roughness – smooth, rough, very rough

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Key feature of the developed methodology

- Investigation of directly measured single distances D_{TLS}
- Principle Comparison of reference distance D_{ref} and D_{TLS}

 N_{10}

N₂

Y_{ref}

 N_3

LS+TS

 $+\mathbf{X}_{ref}$

Surveying the world of tomorrow – 🕨 🖡

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Determination of the reference distance

- Step1: Establishment of a reference frame:
- Leica Absolute Tracker AT960 (MPE=±15µm+6µm/m)
- Levelling provides orientation to gravity

• Determination of the network points: Free network adjustment $\Rightarrow \sigma_X, \sigma_Y, \sigma_Z \max$. 0.06 mm

N.

 N_7

Measuring

 $N_6 \bullet N_5$

object

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Determination of the reference distance

Step2: Determination of the station coordinates of the MS50

- ⇒ Starting point common to all reference distances
- Hz, V- measurements to the six nearest network points (CCR-Reflector)
 - ⇒ backward resection and trigonometric levelling

• Precision: σ_x , σ_y , σ_z max. 0.02 mm

Surveying the world of tomorrow –

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Determination of the reference distance

Step3: Determination of the reference point cloud

- ⇒ Endpoint of the reference distances
- Leica Absolute Scanner LAS-20-8: Uncertainty – spatial length (2 sigma) UL : 26 μm +4 μm /m Connected to the Laser Tracker ⇒ reference point cloud results in the reference frame

Point spacing 0.05 mm (20 millions points)

Surveying the world of tomorrow –

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Determination of the scanned distance

- Cartesian coordinates
 ⇒ D_{TLS} (Hz_{TLS}, V_{TLS})
- Scanning in local coordinate system (LCS)
- Measurement frequency 62Hz
- Distance 10 m
- Point sampling at 1 cm
- Repeated determination of the reference point cloud and the scanned distances for every IA and roughness level

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Allocating the reference distance to the scanned distance

- Based on commonly referenced horizontal direction and vertical angle D_{TLS} (Hz_{TLS}, V_{TLS}) ⇔ D_{ref} (Hz_{ref}, V_{ref})
- V_{TLS} and V_{ref} are directly comparable as both the Laser Tracker and the TLS+TS are oriented to gravity

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Allocating the reference distance to the scanned distance

• Identification of corresponding D_{TLS} (Hz_{TLS_ref}, V_{TLS_ref}) and D_{ref} (Hz_{ref}, V_{ref})

• Search domain: $Hz_{ref} - \Delta \leq Hz_{TLS_ref} \leq Hz_{ref} + \Delta$

$$V_{ref} - \Delta \le V_{TLS_ref} \le V_{ref} + \Delta$$

- At 10 m Δ = 3^{cc}
 ⇒ max. impact on the distance under 60 gon = 0.06 mm
- Ca. 140 290 correspondences between $\rm D_{TLS}$ and $\rm D_{ref}$ were found for each IA
- Calculate the mean value and standard deviation of the differences $\Delta D_i = D_{ref, i} D_{TLS, i}$ for each IA and roughness level

Surveying the world of tomorrow - Hels

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Quality assessment

- Quantification of the uncertainty of the reference distance according to the Guide to the Expression of Uncertainty in Measurement (GUM): σ_{D_ref} < 0.1 mm
- Periodic measurements to check:
 - stability of TLS-specimen
 - stability of the Laser Tracker
 - stability of the reference frame
- Measuring configurations that reduce other influences causing similar effects,

e.g. eccentricity between collimation and distance axis.

Reproducibility: Second campaign with completely new set-up

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Obtained results

- ΔD : mean values
- Max. discrepancy between curves determined in the two campaigns 0.09 mm
- Effect of traditional IA: smooth curve ⇒ 0.8 mm
- Joint effect of IA and roughness: differences between curves ⇒ < 1.0 mm
- Systematic nature of the combined influence
- Statistical significance of the joint effect

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Thank you for your attention!

