

TS04E: GNSS PRENd Networks **Calibration-Free Tilt Compensation**

X. Luo, S. Schaufler, M. Carrera, I. Celebi Leica Geosystems AG, Switzerland

May 8, 2018

Three things I don't like in GNSS RTK surveying...

1. Levelling the pole

2. Measuring obstructed points

3. Any kind of on-site calibrations

Tilt compensation RTK of the Leica GS18 T

- Main advantages over magnetometer-based approaches
 - Completely free from on-site calibrations
 - Immune to magnetic disturbances
 - Applicable at large tilt angles (≥ 30 degrees)
- Innovative tilt compensation technologies
 - Based on precise IMU measurements (instead of magnetometer)
 - Sophisticated GNSS/INS integration with quality control mechanisms

IMU: inertial measurement unit INS: inertial navigation system

Compensation of pole tilt

- Assumptions
 - Surveying pole is a rigid body
 - Length of the pole is precisely known
- Pole tip position derived using
 - GNSS phase center position
 - Length of the pole (*l*)
 - Attitude of the pole
- Interpretation of pole attitude
 - Tilt (*t*) and direction of tilt (lambda)
 - Sensor heading (gamma)

GNSS/INS integration

- Each IMU is factory calibrated over the whole operating temperature range
- Consistency checks between GNSS and INS for high system robustness
- Automatic start of tilt compensation through meter-level movements

MEMS: micro-electro-mechanical sensors

Accuracy aspects

- Accuracy evaluation using a laser tracker system as reference
- Considering different pole dynamics: static, kinematic, stop-and-go, etc.

Attitude and position RMS errors of the Leica GS18 T (pole length: 1.800 m)

Number of positions	Tilt	3D attitude	GNSS 3D	INS 3D	Total 3D
	error	error	error (PC)	error (PT)	error (PT)
18986	0.150 deg	1.014 deg	0.018 m	0.011 m	0.022 m

Total error budget behaves according to the error propagation law

$$\sigma_{Total} = \sqrt{\sigma_{GNSS}^2 + \sigma_{INS}^2}$$

PC: phase center PT: pole tip

Performance analysis Static vs. Instantaneous

- Increasing productivity by measuring points instantaneously
- Similar accuracy between 30-static and instantaneous measurements

Performance analysis Static vs. Instantaneous

2D errors of tilt-compensated RTK positions

Performance analysis Conventional RTK vs. Tilt compensation RTK

- Survey marker located close to a building (conventional RTK still possible)
- Metal facades causing strong magnetic disturbances and multipath effects

Performance analysis Conventional RTK vs. Tilt compensation RTK

- Rover A: Conventional survey-grade GNSS smart antenna
- Increasing availability of RTK fixed positions by 15% with the GS18 T
- Significant improvements in positioning accuracy (by 50% for 3D)

Performance analysis Conventional RTK vs. Tilt compensation RTK

- Rover B: RTK rover with magnetometer-based tilt compensation
- GS18 T: Higher 2D accuracy with realistic coordinate quality (CQ) indicator

Performance analysis Magnetometer-based vs. IMU-based

- Rover B: RTK rover with magnetometer-based tilt compensation
- Significantly large 2D CQ when magnetic disturbances are detected

Performance analysis Large tilt angles

- Measuring an obstructed point with large tilt angles between 36° and 56°
- 3D accuracy below 2 cm with a realistic uncertainty level

Heading-aided 3D visualization Augmented stake-out

- Automatic updates of the 3D viewer depending on the sensor heading
- Easy orientation for enhanced productivity and user experience

Conclusions

- Tilt compensation RTK of the Leica GS18 T
 - Based on precise IMU measurements (instead of magnetometer)
 - Sophisticated GNSS/INS integration with quality control mechanisms
- Main technological advantages
 - Completely free from on-site calibrations
 - Immune to magnetic disturbances
 - Applicable at large tilt angles
 - Heading-aided 3D visualization

User benefits

- Improving RTK applicability and positioning performance
- Enhancing productivity and user experience in the field

Thank you very much for your attention!

Advanced signal tracking technologies

- Importance of low-elevation signal tracking in the tilt compensation use case
- Advanced GNSS antenna technologies
 - Parasitic circular array loading technology
 - Ultra-wideband antenna feeding technology
- High-performance measurement engine
 - Multi-constellation and multi-frequency GNSS
 - High sensitivity also at low elevation angles

Benefits of advanced signal tracking Number of cycle slips

- Rover A: Survey-grade GNSS smart antenna
- GS18 T: Reduction of total cycle slips by 40%

Leica Geosystems

Accuracy aspects

Heading-aided 3D visualization

- Automatic updates of the 3D viewer depending on the sensor heading
- Easy orientation for enhanced productivity and user experience

