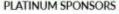


Introducing the Latest Version of the Global Elevation Testing Facility (GEDTF)

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES



6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Introducing the Latest Version of the Global Elevation **Testing Facility (GEDTF) (9559)**

Kazimierz Becek

Geomatics Department Bulent Ecevit University, Zonguldak, Turkey And

Faculty of Geoengineering, Mining and Geology Wroclaw University of Science and Technology, Poland

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

How is the accuracy of a DEM assessed?

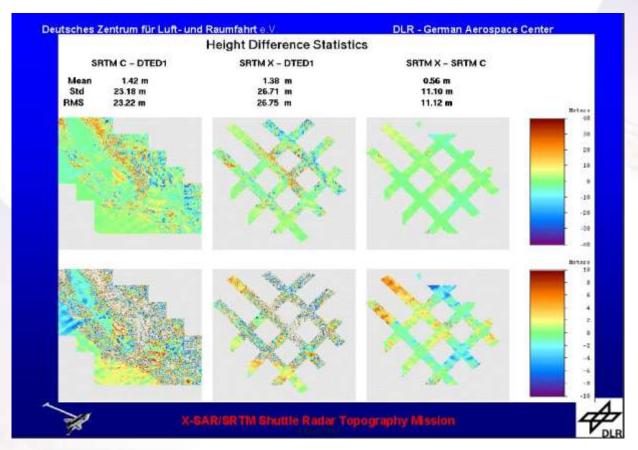
Usually by showing an array of discrepancies:

d = assessed DEM - reference DEM,

and some numbers such as min/max(d), mean(d), STD(d) and a histogram

But this approach is dependent on the type of terrain:

Different results will be achieved over different types of terrain even if the same method for establishing height is used. So, really this is not a perfect way to assess the accuracy of a DEM!



6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

A typical visualization of an accuracy assessment of a DEM

6-11 May 2018 ISTANBUL

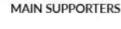
EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Other method: Pixel-based assessment

[Becek, 2008, GRL, doi:10.1029/2008GL034592]

$$\sigma_{DEM}^2 = \sigma_I^2 + \sigma_T^2 + \sigma_E^2$$


Term 1 is the instrument dependant component. The component may or may not be known;

Term 2 is the Target-induced component;

Term 3 is the environment dependant component.

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Variance of the Target-induced error can be estimated:

$$\sigma_T^2 = \frac{d^2tg^2(s)}{12}$$

where d is the pixel size. In the case of a topographic map d is equivalent to the contour interval. For example: for $d = 1 \text{m} \sigma = 0.29 \text{m}$

6-11 May 2018 ISTANBUL

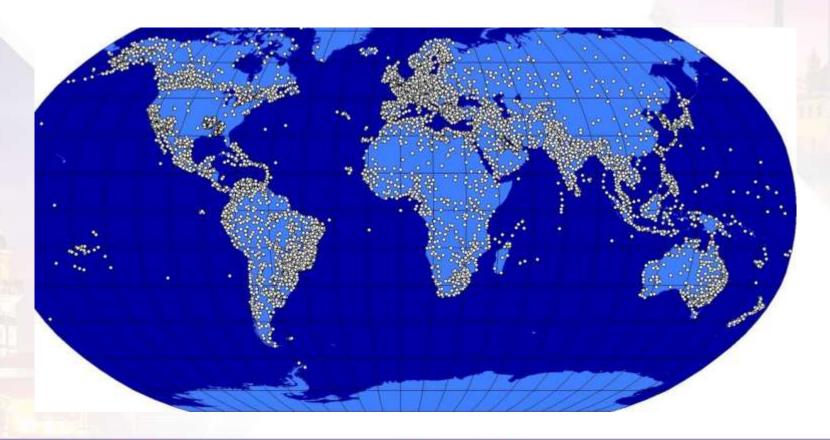
EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Variance of the Target-induced error can be estimated:

$$\sigma_T^2 = \frac{d^2tg^2(s)}{12}$$

where d is the pixel size. In the case of a topographic map d is equivalent to the contour interval. For example: for d = 1m $\sigma = 0.29$ m

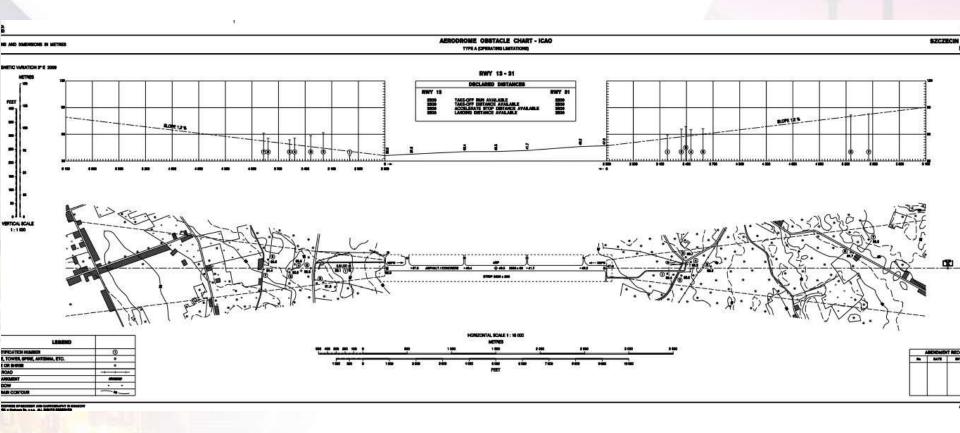


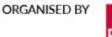
6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Some of the world's airports:




6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

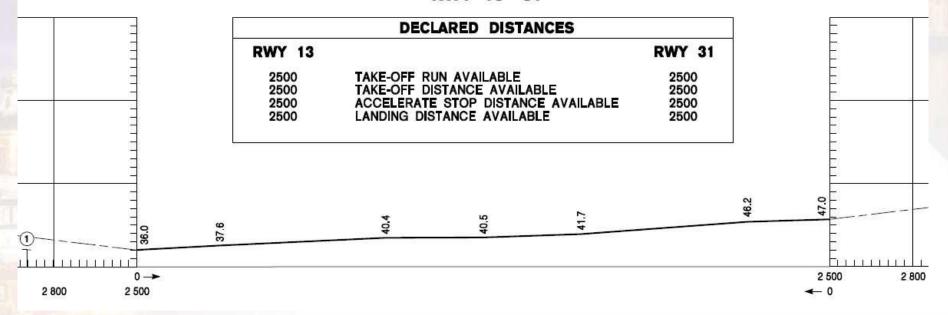
ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Runway at EPSC – Szczecin, Goleniów, Poland

THE SCHNICE OF WHERE

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:


ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Runway at EPSC – Szczecin, Goleniów, Poland

AERODROME OBSTACLE CHART - ICAO

TYPE A (OPERATING LIMITATIONS)

RWY 13 - 31

GLOBAL ELEVATION DATA TESTING FACILITY

Thu, 23 Jan 2014, 09:43

[Home] ----- [Database] ----- [Case Study] ----- [References] ----- [Contributions & Donations] ----- [About]

The Database

News:

+ Attend the presentatin of the GEDTF at the XXIV FIG 2010 Congress in Sydney, Australia. more

+ The Brunei International GNSS Service station (BIGSS) is coming soon more

+ Masters program in Radar Remote Sensing (RRS), GNSS & GIS will degree). be available soon @ UBD more

Links:

- Asia Surveying & Mapping Magazine
 - ASTER
 - · GLAS
 - InSAR
 - · SPOT
 - · SRTM.C
 - SRTM.X

Longitude:

Check

The data for the GEDTF were compiled from various sources. A majority of the runway records were extracted from the Google™ Earth. The data have been verified using the World Aeronautical Database, AirNay.com and other sites. Although all care was exercised, we cannot accept any responsibility for any errors or omissions found in the GEDTF. See the Legal Stuff for more details.

The structure of a record includes:

- Region of the world (as per SRTM classification).
- · Country.
- · Airport name.
- Runway number.
- · Latitude and longitude (WGS 84) of both ends of runway (decimal
- · Elevations of both ends of runway (m) above mean sea level.
- · Length and Width of the runway (m).
- Type of surface material (Asphalt, concrete, turf, etc).
- · Other suitable features (under development).

The data querying mechanism allows extracting records within a 5° by 5° tile.

Enter coordinates (decimal degrees) of the centre of your area of interest (AOI) in the space

Click 'Check' to find the number of runways withing the AOI.

Click 'Download' to get the data for the AOI.

Latitude:

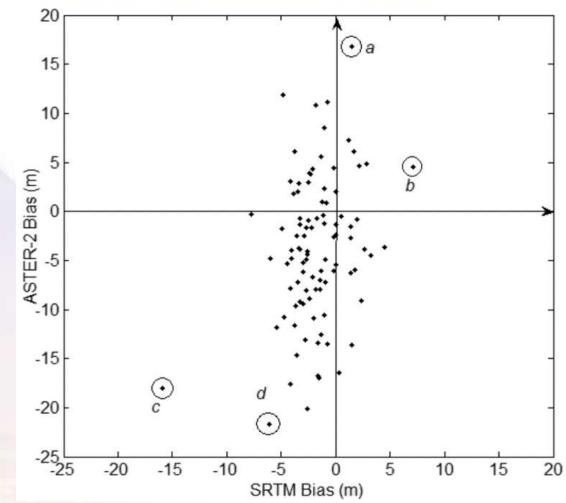
Download

www.gedtf.org

Copyright @ 2010, K. Becek. All Right Reserved. Created by Soartech Systems Sdn Bhd , Brunei Darussalam

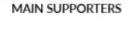
ORGANISED BY

MAIN SUPPORTERS

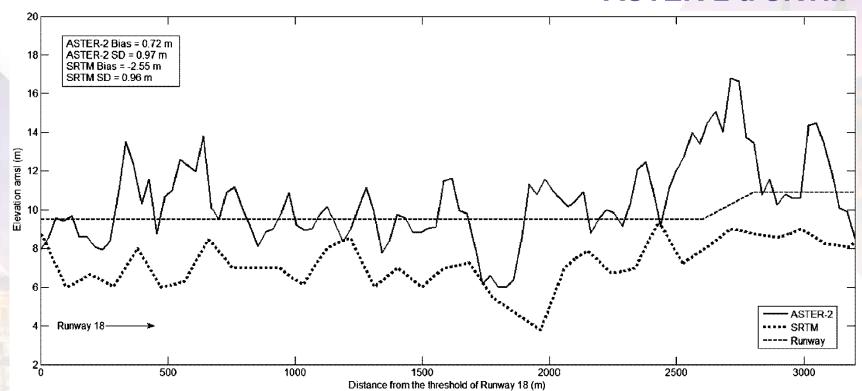


6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

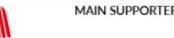

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

ASTER-2 vs. SRTM

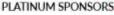


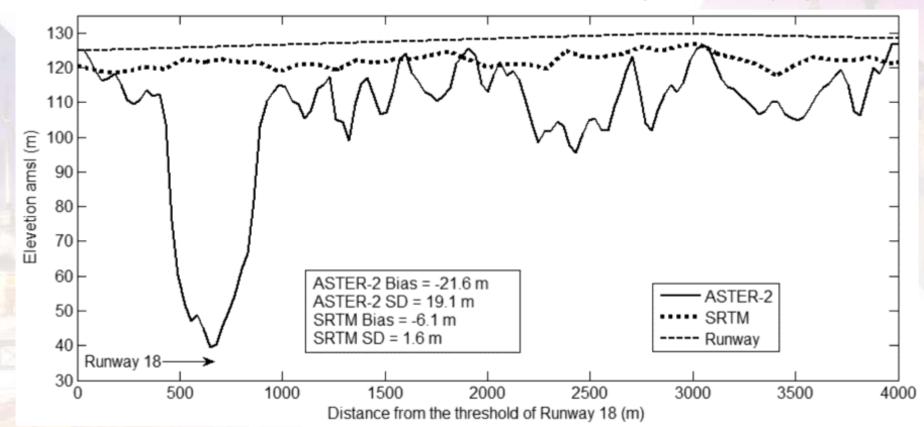
6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:


ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

ASTER-2 a SRTM



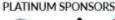


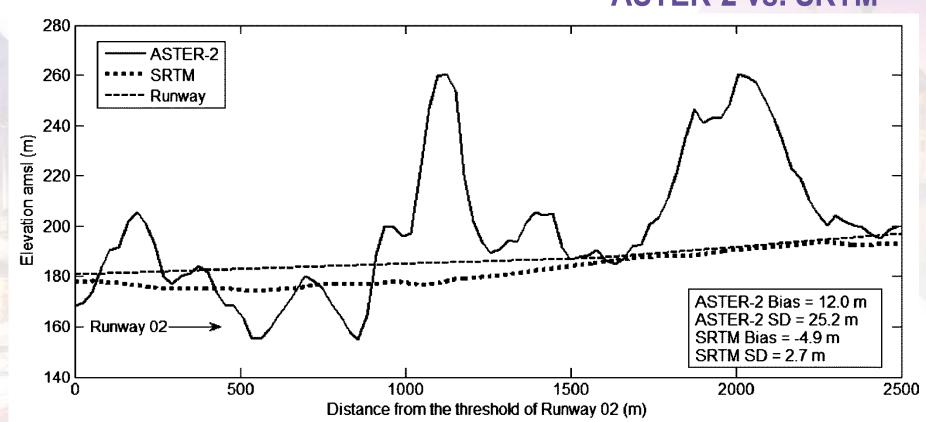
6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

ASTER-2 vs. SRTM



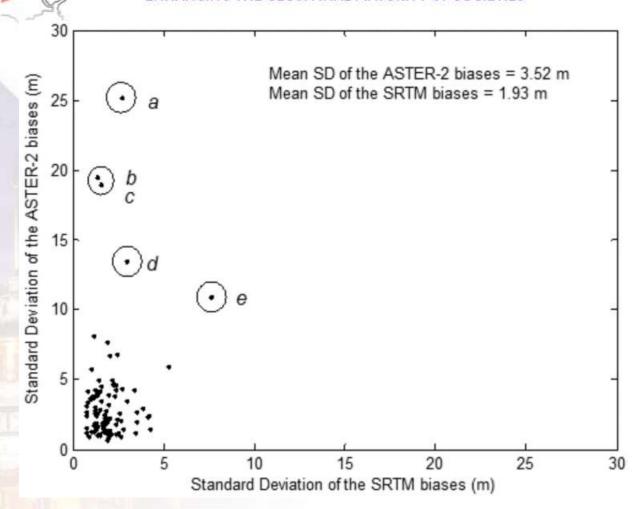


6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

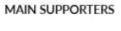
ASTER-2 vs. SRTM



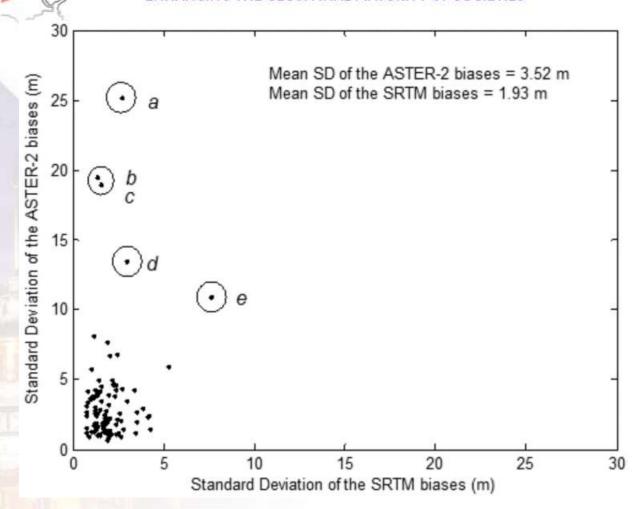
ESTER-2 ASRTMIG Congress 2018

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:


ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

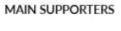
ASTER-2 vs. SRTM



ESTER-2 ASRTMIG Congress 2018

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:


ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

ASTER-2 vs. SRTM

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Global Elevation Data Testing Facility

Main page • Get Data • About • Back to Previous Page

Runways by country

	country	RWY's
	<u>Afghanistan</u>	25
	<u>Albania</u>	4
•	<u>Algeria</u>	74
₩	American Samoa	4
53	<u>Andorra</u>	0

ORGANISED BY

THE SCIENCE OF WHERE

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Global Elevation Data Testing Facility

Main page • Get Data • About • Back to Previous Page

Runways in Australia

city	ICAO	IATA	airport	runway	dimensions
Albany	YABA	ALH	Albany Airport	RWY 5	1096x30
Albany	YABA	ALH	Albany Airport	<u>RWY 14</u>	1800x30
Amberley	YAMB		Amberley Airport	RWY 4	1523x45
Amberley	YAMB		Amberley Airport	<u>RWY 15</u>	3047x45
Alpha	YAPH	ABH	Alpha Airport	<u>RWY 18</u>	1456x30
Ararat	YARA	ARY	Ararat Airport	<u>RWY 12</u>	1240x18
Argyle	YARG	GYL	Argyle Airport	RWY 1	2300x30
Armidale	YARM	ARM	Armidale Airport	RWY 5	1738x30
Armidale	YARM	ARM	Armidale Airport	RWY 9	1116x30
Aurukun	YAUR	AUU	Aurukun Airport	<u>RWY 16</u>	1262x30
Avalon	YAUR	AUU	Avalon Airport	<u>RWY 18</u>	3048x45

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Global Elevation Data Testing Facility

Main page • Get Data • About • Back to Previous Page

Warsaw Chopin Airport RWY 11 Country City

Warsaw

Poland

A code WAW

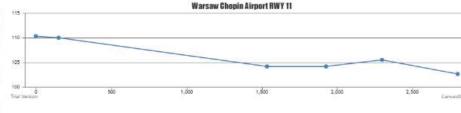
port Warsaw Chopin Airport

- 11

Start 52.171475, 20.946714

End 52.162869, 20.977372

2800


Vidth (m) 50

tion [m] 31.4

iurface asphalt/concrete

Map Satelifie		
		Chille White
		/// 图特德·周德
	Nest I	
不是一个人。		
() () () () () () () () () (MANUALU	加工品品的
	1017	
Goode		nasari Copenitora II post April Frama artiša Reportament

Transversal profile	
abscissa [m]	ordinata [m]
0	110.3
150	110.0
1 535	104.2
1 925	104.2
2 300	105.5
2 800	102.7

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES



Thank you

Nepenthes L.

