

Earthquake hazard mapping and analysis by integrating GIS, AHP and **TOPSIS for Küçükçekmece region in Turkey**

Turan ERDEN, Penjani Hopkins NYIMBILI, and Himmet KARAMAN stan<mark>bul Technical University, Turkey</mark>

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT: ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

MAIN SUPPORTERS

PLATINUM SPONSORS

Geosystem

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Presentation Outline

- Introduction
- Motivation and Objectives
- Case Study AHP and TOPSIS Implementation
- Results and Comparisons
- Discussion and Conclusions

ORGANISED BY

MAIN SUPPORTERS

XXVI FIG Congress 2018 6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Introduction: Why do we need to produce Hazard maps?

- Tragic earthquake events underscore need for effective disaster and earthquake management (DEM)
- Hazard maps via GIS required across all phases:
 - risk identification, most hazardous areas
 - planning equipment, mobilization, asset removal/retrofit, damage assessment, recovery efforts
 - part of disaster mitigation activities
- Need to minimize conflicts, uncertainties in hazard map production

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Introduction: Multi-Criteria Decision Analysis (MCDA)

- Technique introduced in mid-1970s
- For solving complex problems having many conflicting criteria and alternatives
- GIS-based MCDA integration of GIS, enhancing planning and decision-making

• Spatial + value judgement decisionmaking problems e.g. site selection

PLATINUM SPONSORS

HE SCHINCE OF WHERE

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Multi-Criteria Decision Analysis (MCDA) Methods

- MADA (Multi-Attribute Decision Analysis) ~ evaluating criteria into attributes
- discrete: pre-set, finite alternatives
- selection process = solution
- MODA (Multi-Objective Decision Analysis) ~ evaluating *criteria* into *objectives*
- continuous: infinite alternatives

MAIN SUPPORTERS

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

TOPSIS Method (Hwang and Yoon, 1981)

- Concept:
 - Best alternative: simultaneously, closest to Positive Ideal Solution (PIS) and farthest away from **Negative Ideal Solution (NIS)**
- final ranking acquired bv closeness index

Step 1: Define and construct a performance/decision matrix

Step 2: Normalize the decision matrix

Step 3: Assign a weight vector to attribute set for group and calculate weighted normalized decision matrix

Step 4: Determine the PIS and NIS

Step 5: Calculate the separation distance from PIS and NIS

Step 6: Compute relative closeness of each alternative to ideal solution

Step 7: Ranking of alternatives/preference order

MAIN SUPPORTERS

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Motivation and Objectives: Why use TOPSIS?

- Among best for resolving rank reversal issues
- Intuitive: easy to use and understand.
- Simple computational process; easily programmable and integrated in other DSS - GIS.
- **GIS visualization** of all alternatives on attributes
- Scaler value for both best and worst alternatives
- Suitable for raster data
- For comparison and validation of AHP result for suitability assessment for earthquake hazard risk/ loss assessment - map

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Case Study: Study area

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Case Study: Criteria selection

• For five (5) criterion map layers, pairwise comparison analysis, data preparation and GIS processing for AHP as applied - Erden and Karaman (2012) study

	Criteria		Class Values				Woights
			1	2	3	4	Driorition
		Risk Level Scale	No/Low Risk			Major Risk	Phonues
1	FT (field topography) [degrees]		0-10	10-15	15-30	>30	0.06 (6%)
2	DS (source-to-site distance) [km]		22.21-19.80	19.80-17.38	17.38-14.97	14.97-12.55	0.38 (38%)
3	SC (soil classification) [m/s]		800-760	760-360	360-180	180-50	0.24 (24%)
4	LP (liquefaction potential)		104-103	103-102	102-101	101	0.22 (22%)
5	FM (fault/focal mechanism)		0.45-0.53	0.53-0.61	0.61-0.68	0.68-0.76	0.10 (10%)
5	FM (fault/focal mechanism)		0.45-0.53	0.53-0.61	0.61-0.68	0.68-0.76	0.10 (10%

Input in AHP and TOPSIS models for final hazard map generation

FIG XXVI FIG Congress 2018 6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Results and Comparisons: AHP model

 After weighted sum analysis process = weighted sum earthquake hazard map (EHM) output raster

ORGANISED BY

THE SCHINCE OF WHERE

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Results and Comparisons: TOPSIS model

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

AHP vs TOPSIS hazard maps – visual comparison

- * Similar risk level patterns:
- ⇒ Areas to south = highest risk (risk level 4)
- ⇒ Areas around middle section = medium to high risk (risk level 3)
- ⇒ Areas to north = generally, lower risk (risk level 1 and 2)

Strimble.

PLATINUM SPONSORS

THE SCIENCE OF WHERE

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Statistical comparison analysis – Variance map

 Compared the difference between the AHP and TOPSIS maps, pixel by pixel by spatial location

⇒ the class value ranging from 0 to 0.5 and 2 showed no variance or little difference between the AHP and TOPSIS hazard map

XXVI FIG Congress 2018 6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Discussion

- Five (5) main criteria used as input for earthquake effects simulation in form of hazard maps for both AHP and TOPSIS
- AHP and TOPSIS hazard maps, comparable = high correlation and good compatibility
- Most hazardous regions in southern parts extending towards middle
- Weights from AHP method = consistent and robust ~ increasing reliability of TOPSIS hazard maps
- Some limitations accuracy, resolution and up-to-datedness of data could affect reliability of final AHP and TOPSIS hazard maps

Conclusions and future developments

- Other MCDA techniques such as fuzzy AHP/TOPSIS, ELECTRE for more comprehensive comparisons and validation
- Framework for hazard mapping and analysis established = other disasters: floods, landslides, fires, etc. – ModelBuilder application
- Preferences of experts/others involved in emergency management
 reducing critical decision-making time by minimizing conflicts
- <u>Recommend</u>: <u>automated</u> techniques/ software integration of GIS, AHP and TOPSIS process flows - to <u>reduce time</u> for analysis and map preparation

