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SUMMARY  

 

Robotic total stations are modern geodetic multi-sensor systems measuring horizontal and 

vertical angles as well as distances using time-of-flight methods, thus delivering 3D-

coordinates for static as well as moving objects. Automatic target detection (by rough and fine 

pointing techniques) and tracking are standard techniques if the objects are signalized with 

reflectors and the total station is motorized. Nowadays these instruments are additionally 

equipped with one or two cameras to generate images mainly for documentation purposes. 

This paves the way to detect and track objects that are not signalized by reflectors. Photo-

grammetric techniques such as SURF (Speeded-up Robust Feature) or SIFT (Scale Invariant 

Feature Transform) are applied for the detection of special, recognizable object features in the 

images. The pixel coordinates of these features result in vertical and horizontal angles if the 

parallaxes between the camera optical center and the total station origin are known or 

calibrated. If the features are extracted in a sequence of images the movement of any object 

can be tracked automatically. For the position determination reflectorless distance 

measurement from the total station to the object is required additionally. Until now this was 

realized only for static objects. In this contribution an example of a kinematic application is 

also shown. The quality of these tracking procedures may be verified by an instrument of 

higher accuracy. This has been done using a laser tracker. 
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1. INTRODUCTION 

 

In the past 15 years, Image-assisted Robotic Total Stations (IATS) have enriched the 

application spectrum in the field of engineering geodesy through their combined 3D 

positioning capability and digital camera integration.  

The theoretical background and the prerequisites of IATS for precise measurements can be 

consulted in Ehrhart and Lienhart (2017). For a historical insight of the development that 

leads to the current state-of-the-art, Wagner et al. (2014) is advisable. An overview of IATS 

producers to that time is given by Scherer and Lerma (2009).  

In this paper, two commercially available IATS are used to exemplify applications in which 

objects are identified and tracked by means of images using image processing algorithms like 

SIFT and SURF. Object recognition as well as target tracking are realized by the digital 

cameras of the IATS. 

 

2. IMAGE-BASED OBJECT RECOGNITION, POSITION DETERMINATION 

AND TRACKING  

 

This section treats the usage of an image-assisted total station (IATS) in order to perform 

static object recognition, position determination, and tracking. Within this context, the 

potential of the integrated photo module of the IATS should be fully exploited and not be 

limited to documentation purposes only. 

 

2.1 Image Processing Fundamentals 

 

According to Luhmann (2010) the digital image processing can be subdivided into different 

steps: image capturing, pre-processing, segmentation, detection, clustering, configuration, and 

result assessment. 

The pixel coordinate system has a fundamental function in the image processing task. It is 

defined as a left-handed 2-dimensional x-y coordinate system, described by rows and 

columns, whereby the x-axis pointing into the direction of rows and the y-axis into direction 

of columns (Sonka et al. 1994). In general, an object in the image covers multiple pixels in the 

image. These covered pixels are coherent and their grey values are rather similar. 

To increase the efficiency of image processing, image pyramids are used. An image pyramid 

is a series of images, where the next following image is reduced in resolution and size by 

factor n, compared with its predecessor. Additionally, the reduced image is smoothed by 

filter. Thus with decreasing resolution, small image structures disappear because the 

informational content decreases (Luhmann 2010). This allows to firstly searching for rough 

features in images with decreased resolution. Afterwards the search can be focused on 
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previously found, interesting areas of the image, by the use of images of the pyramid with 

higher resolution. 

Filtering can be realized by convolutions in the spatial domain and multiplications in the 

frequency domain. For frequency domain operations the image must be firstly transformed 

into the frequency domain e.g. by Fourier transformation (Sonka et al. 1994, Luhmann 2010).  

The convolution is realized by a stepwise “sliding” of the convolution kernel across the 

image. The pixel value beneath the kernel is multiplied by the corresponding filter kernel 

value. These products are subsequently summed and multiplied by the sum of the kernel 

values. The resulting value is then allocated to the pixel, which best corresponds to the mean 

value of the filter kernel (Luhmann 2010). 

There are different smoothing filter used in digital image processing. The most import 

smoothing filters are the Box filter and the Gaussian filter. Detailed information on smoothing 

filters may be found in Luhmnann (2010). Besides smoothing filters, edge detector filters play 

a superior role in image processing. They are based on numerical derivations of grey value 

functions and are used to locate sharp changes in grey values, which in turn, indicate edges. 

Edges are pixels, where the first derivative of the grey value function changes abruptly (Sonka 

et al. 1994).  

The simplest edge detector is the Roberts detector, based on the 1st derivative of the pixel 

plane in x- and y-direction (Girod 2013). The Sobel operator combines a derivation with a 

smoothing. This helps to counteract the amplification of noise induced by the derivation. To 

obtain further information about the edge curvature the Laplace operator can be applied. It is 

based on the 2nd derivative of the grey value function. Thereby the edges are represented by 

sign changes. On the other hand the 2nd order derivative negatively affects the noise 

sensitivity. To counteract this adverse effect the image can be smoothed by the Gaussian filter 

before derivation. The combination of smoothing and differentiation leads to the Laplacian of 

Gaussian operator. The main disadvantage of edge detectors is the instability of their position. 

Edges are stable in only one direction. In contrast, most image processing algorithms need 

features with stable positions. Therefore corners are more suitable because of their fix 

localization in both directions. One of the most common corner detectors is the Hessian-

detector. The detector is based on the usage of the determinant of the Hessian matrix (Bay et 

al. 2006). The Hessian matrix is defined as follows (Merziger and Wirth 2010): 

ℋ𝑓 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥) =

(

  
 

𝜕2𝑓

𝜕𝑥1𝜕𝑥1
(𝑥) ⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
(𝑥)

⋮  ⋮
𝜕2𝑓
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(𝑥) …

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥𝑛
(𝑥)
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 (1) 

The feature detection is accomplished by the analysis of the determinant. The feature is 

located at the position where the determinant indicates a maximum. According to Merziger 

and Wirth (2010) the determinant is defined as follows: 

𝑑𝑒𝑡ℋ = 𝐷𝑥𝑥 ∙ 𝐷𝑦𝑦 − (𝑤 ∙ 𝐷𝑥𝑦)
2 (2) 

The elements Dxx, Dyy and Dxy are so called Blob-filter responses at image point x. They 

represent a 9 x 9 Box-filter. w represents the weighting factor. In the next section the usage of 
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the presented image processing tools will be illustrated within common image processing 

algorithms. 

 

2.2 Image Processing Algorithms for Feature Extraction Fundamentals 

 

There are many possibilities of image processing that originate from the field of computer 

vision (Shapiro and Stockman, 2000) and are used for such purposes, but these can be 

grouped in three classes: edge-based, template-based and point-based (Reiterer and Wagner, 

2012). As the name already suggests, edge-based implies identifying edges of an object and 

then computing, if necessary, its geometrical center. In this way, if the geometry doesn’t 

change and the background shows contrast, objects can be easily detected based on their 

edges. Template-based involves using a pre-known pattern that the algorithm recognizes. 

Therefore patterns are always compared with the reference pattern and if a match is found, the 

object is considered to be the searched one. Point-based implies finding certain features 

(points) that, similarly to the template-based, match a pre-known image. Two well-known 

point-based feature extraction algorithms will be detailed in the following sections. The 

process of feature extraction generally consists of two steps: detection and description. 

2.2.1  SIFT (Scale Invariant Feature Transform) Algorithm 

 

According to Lowe (1999) the requirements on image-based object recognition from real 

world is, that image objects, so called features, that are randomly arranged in space and partly 

covered, are identified and detected uniquely. The features shall be invariant with respect to 

translations, rotations, scaling and changes in illuminance. 

Furthermore, the features shall be unaffected by image 

distortions and noise. To fulfill the requirements the image 

features must possess characteristic shapes, in order to be 

identified uniquely. The SIFT algorithm decomposes the 

image into a finite number of objects, which are described 

by local descriptor vectors. The required processing step 

after the image capturing is the localization of the 

characteristic image features. Their positions, identified in 

the space domain, must fulfill the invariance properties. 

The requisite mathematical steps are comprised in the so 

called detector. The detector is based on two convolutions of 

the image with the Gaussian kernel and a subsequent 

forming of Gaussian difference in order to detect curvatures. 

The Gaussian difference approximates the Laplacian of Gaussian in order to shorten 

processing time. After resampling the image by the use of bilinear interpolation (Luhmann 

2010), the search for local maxima and minima within different levels of image pyramids is 

conducted, where the neighboring pixels of the image are compared with each other. 

The detector step is followed by the descriptor step in order to characterize the image. For this 

purpose, the calculation of the feature gradient and orientation is conducted. This is done for 

each pixel Ai,j by the calculation of the gradient magnitude 𝑀𝑖,𝑗 and the orientation 𝑅𝑖,𝑗. Figure 

1 exemplarily depicts the descriptor. 

Figure 1. Feature descriptor; yellow: 

orientation R_(i,j); green: magnitude 

M_(i,j). 
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𝑀𝑖,𝑗 = √(𝐴𝑖,𝑗 − 𝐴𝑖+1,𝑗)
2
+ (𝐴𝑖,𝑗 − 𝐴𝑖,𝑗+1)

2 
(3) 

𝑅𝑖,𝑗 = arctan (
𝐴𝑖,𝑗 − 𝐴𝑖+1,𝑗

𝐴𝑖,𝑗+1 − 𝐴𝑖,𝑗
) (4) 

The descriptor vector is created for each feature and is of dimension 𝑛 = 128. It contains the 

feature’s stable position in the image, the scale and the orientation. Optionally, the descriptor 

additionally might contain colors or textures. Detailed inside view into the SIFT algorithm is 

provided by Lowe (1999). 

2.2.2 SURF (Speeded-Up Rubust Feature) Algorithm 

 

According to Bay et al. (2008) the most important property of the detector is the repeatability. 

In this context, the repeatability means the reliability of the detector to identify and find the 

same physical object under changing visual conditions. Therefore the neighborhood of each 

relevant image point is described by the descriptor. The descriptor must be distinctive and 

robust towards noise, translations as well as geometric deformations and photogrammetric 

distortions. By the use of feature descriptors from two different images, these features and 

even the images (usage of multiple features) can be allocated to each other. The allocation is 

based e.g. on the Euclidean distance between the two descriptors. The dimension of the 

descriptor has a direct impact on the allocation time and thus on the computation duration. 

Hence, small dimensions of the descriptor vector are desirable on the one hand. On the other 

hand, small descriptor dimensions are less unique and thus less distinctive (Bay et al. 2008). 

SURF algorithm offers a good compromise between short processing times and sufficient 

descriptor dimension in order to ensure distinctiveness. SURF uses the scale and rotation 

invariants detectors and descriptors. No color information is used. 

The detector is based on the usage of the determinant of the Hessian matrix (cf. Section 2.1). 

Therefore integral images are introduced. Integral images serve for fast computations of pixel 

sums within rectangular sections (Bay et al. 2008). The input of the integral image 𝐼𝛴(𝒙) =

∑ ∑ 𝐼(𝑖, 𝑗)
𝑗≤𝑦
𝑗=0

𝑖≤𝑥
𝑖=0  at position x=(x,y)T is the sum of all pixels of the input image I within a 

rectangular region, spanned between the image origin and image point x. 

Now the Blob-filter responses, which can be used to calculate maxima and minima, are stored 

in a Blob response map. The map represents the image scale space. The scale space is 

implemented by image pyramids and is divided into octaves. The octaves represent series of 

filter responses, determined by convolution. Each octave is subdivided into a constant number 

of scaling levels. Hence the detector contains the steps of suppression of the input image and 

the determination of the features by the described procedure, using the Hessian determinant. 

The use of integral images increases the computational speed and enhances the robustness 

(Bay et al. 2008). 

The descriptor uses the intensity values to characterize the features. It is based on the 

distribution of the 1st order responses of the Haar-Wavelet in x and y direction. Details on 

Haar-Wavelets can be excluded from e.g. Talukder and Harada (2007). For the descriptor, 

based on the Haar-Wavelet, firstly a rectangular region around the point of interest is built. 
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The determination of orientation of each region is accomplished by the detector step. Then, 

the regions are subdivided into smaller rectangular regions. The Haar-Wavelet responses of 

these smaller regions are calculated, where dx is the response in 𝑥-direction and dy is the 

response in 𝑦-direction. Information about the polarity and change of intensity is obtained 

from |dx| and |dy|. For the description of the intensity structure of each subpixel region a 4-

dimensional descriptor vector, shaped as 𝑣 = (∑𝑑𝑥 , ∑ 𝑑𝑦 , ∑|𝑑𝑥| , ∑|𝑑𝑦|) is then established. 

The local sub-region descriptor vector is then calculated for all sub-regions, which are 4 x 4 = 

16 in total. Hence the descriptor vector for each feature is of dimension 𝑛 = 16 x 4 = 64.  

More detailed information on SURF algorithm may be extracted from Bay et al. (2008). A 

short summary of the SIFT and SURF algorithms is presented in table 1. 

Table 1 Comparison between SIFT and SURF 

 SIFT SURF 

Algorithm input Greyscale images Intensity images 

Used filter Original filter Approximated filter 

Structure of the scale space 

pyramid 

Different resolutions of the 

image 
Different resolutions of the filter 

Base of the descriptor Gradients Haar-wavelet filter response 

Descriptor dimension 128-dimensional 64-dimensional 

General property More reliable Faster 

 

2.3 Object Recognition and Matching 

 

After the extraction of the features is accomplished by one of the pre-described algorithms of 

section 4.2, the next operation, in sequence of the image processing, is the object recognition. 

The procedure is based on a comparison between the reference image and the test image and 

is defined as matching step. In detail, the extracted key points (cf. Section 4.2) of the 

reference and test image are compared with each other. For the comparison, n-dimensional 

feature vector (SIFT 𝑛 =  128, SURF 𝑛 =  64) is defined as the position of the key points in 

n-dimensional space. The task to be solved is the finding of next neighbors between the two 

feature vectors (reference and test image) by the use of the Best-Bin-First algorithm, 

according to Muja and Lowe (2012). Best-Bin-First algorithm is suitable to efficiently find an 

approximate solution to the nearest neighbor search problem in very-high-dimensional spaces 

(Kybic and Vnucko 2010). The procedure is based on a binary coded description of the 

feature vector. It has to be stated that this solution provides an approximate solution only. 

The key points, expressed by the feature vector created by SIFT or SURF, that are passed to 

the algorithm are subdivided in k clusters. Therefore k randomly chosen points form the 

cluster center. The remaining points are allocated to the particular cluster, to which their 

distance is minimal. If the cluster is larger than a predefined threshold, new cluster centers are 

chosen and the algorithm starts anew. This helps to prevent different cluster sizes, if 

unfavorable cluster centers have been chosen beforehand. Each cluster forms a k-dimensional 

tree, the so called k-d tree. The algorithm is advantageous in tree building and during search 

operations, because of the parallel and simultaneous processing of different trees. The search 

for the nearest neighbor in the tree is conducted from top to bottom, where at each branch the 

nearest node to the starting point is marked. Non-marked nodes are stored in a separate 
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priority list. After all trees are searched once, the search proceeds from the next point which is 

nearest to starting point. Now the next nearest neighbors of particular k-d trees from the 

priority list are compared. The points with the minimal distance are chosen. The number of 

chosen points defines the approximation grade. The higher the grade the more neighbors are 

found, though the processing time increases. 

By the use of the recognized point pairs, the transformation matrix between the two images 

can be determined. The matrix allows transformations of pixels respectively points from the 

reference image into test image. This procedure is called pixel-to pixel transformation. 

To avoid gross errors in the point cloud and to increase the robustness a filtering by the 

MSAC (M-estimator Sample Consensus) algorithm is applied. Detailed information on 

MSAC may be found in Torr and Zisserman (2000). The transformation itself can be 

expressed by an affine transformation according to Lowe (1999): 

 

[
𝑢
𝑣
] = [

𝑚1 𝑚2
𝑚3 𝑚4

] ∙ [
𝑥
𝑦] + [

𝑡𝑥
𝑡𝑦
] (5) 

𝑢, 𝑣: test image point coordinates, 

𝑥, 𝑦: reference image point coordinates, 

𝑡𝑥,𝑡𝑦: translation parameters, 

𝑚1, 𝑚2, 𝑚3, 𝑚4: rotation and scale parameters. 

 

Thus, two tasks have to be solved. The first task is the determination of the transformation 

parameters. These are determined by the least squares method according to e.g. Niemeier 

(2008). In order to estimate the 6 parameters, the minimum number of requisite matches 

between the reference and the test image must be three. In the second task all points of the 

reference image can be transformed into the test image by the estimated transformation 

parameters. 

 

2.4 Object Position Determination 

 

After the successful matching and identification of the object in the test image according to 

section 4.3, the next challenge is the position determination of the specific object. 

In general, the determination of object positions in the target coordinate system, which is the 

tachymeter system in this specific case, requires horizontal and vertical telescope angles, as 

well as a distance measurement, obtained by the reflector-less distance measurement (EDM). 

Hence, the obtainment of the horizontal and vertical telescope angles from images is 

necessary and will be elaborated in the following. In each reference image key points are 

defined, of which the pixel coordinates in the reference image, as well as their coordinates in 

the object coordinate system are known. The geometry of the object is also fully known in the 

object coordinate system. By the use of the pre-described pixel-to-pixel transformation from 

section 4.3, the transformation parameters between the reference and the test image can be 

obtained. The next step is the transition from the image system into the tachymeter system. 

Therefore determination of the telescope’s aiming direction, expressed by Hz- and V-angles, 

from the present pixel coordinate of the appropriate point must be determined. For this, the 

relation between pixel and angle is required. This relation, described by the transfer factor 𝑖, is 
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different for each instrument and is either given or must be determined by calibration. The 

relation describes the function between a specific telescope angle 𝛼 and the induced shift 𝑝 in 

the pixel system. Thus the transfer factor 𝑖 can be expressed as follows: 

𝑖 =
𝑝

𝛼
 (6) 

Reconsidering the correction terms, introduced for the eccentric camera-telescope layout, the 

calculation of the horizontal and vertical telescope angles from the present image point is 

carried out by equation (7-8). 

𝐻𝑧 = 𝑖 ∙ (ℎ𝑝𝑖𝑥𝑔 − (ℎ𝑝𝑖𝑥𝑚 + 𝑘ℎ)) (7) 

𝑉 = 𝑖 ∙ (𝑣𝑝𝑖𝑥𝑔 − (𝑣𝑝𝑖𝑥𝑚 + 𝑘𝑣)) 
(8) 

 
ℎ𝑝𝑖𝑥𝑔 , 𝑣𝑝𝑖𝑥𝑔: pixel coordinates (row and column) of the measured object in the image, 

ℎ𝑝𝑖𝑥𝑚 , 𝑣𝑝𝑖𝑥𝑚: pixel coordinates (row and column) of the image center, 

𝐻𝑧: horizontal telescope angle,  

𝑉: vertical telescope angle, 

𝑘ℎ: horizontal correction term (valid for eccentric layout only), 

𝑘𝑣:  vertical correction term (valid for eccentric layout only). 

 

By equation (7-8) the telescope directions of the key point can now be calculated. These 

directions can be adjusted by the tachymeter’s actuators. By the additional use of the 

reflector-less distance measurement 𝑠, all required elements for the coordinate calculation are 

available. According to Torge (1980) the coordinates are calculated as follows: 

𝑥 = 𝑠 ∙ cos𝐻𝑧 ∙ sin 𝑉 (9) 

𝑦 = 𝑠 ∙ sin𝐻𝑧 ∙ sin 𝑉 (10) 

𝑧 = 𝑠 ∙ cos 𝑉 (11) 

 

2.5 Principles of Image-based Object Tracking 

 

Basically, when using images a certain object of interest must be identified and some features 

need to be extracted for further processing. In sections 2.2.1 and 2.2.2, SIFT and SURF, 

which are point-based algorithms, were described in detail and further emphasis will not be 

put here. The main difference between different algorithms is the computation time, which 

plays an important role for the image-based tracking process. 

Similar to a reflector tracking process, the difference between the crosshair point and object 

center needs to be constantly minimized. Therefore, if change or movement of the object is 

detected, the telescope is guided until the before mentioned difference is reduced to zero. 

Applying this in a continuous sequence creates the image-based tracking process. The quality 

of this process is mainly dictated by image resolution, optical zoom capacity, data transfer 

rate, processing speed, object speed and telescope rotations speed. 
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Figure2 Flowchart of static, image-based object recognition 

3. APPLICATIONS  

3.1 Example of Static Object Recognition and Positioning 
 

In this example the position of an unmanned ground vehicle (UGV) should be determined by 

the presented image-based method. The concerned object is model of a tracked loader at scale 

1:14. The used instrument is the Trimble S7 robotic total station, that incorporates a digital 

camera which has a field of view of 20.3° x 15.2° (Trimble 2018). 

The following presented steps are embedded within a control program, in order to 

automatically steer the total station. Most state-of-the art total stations can be steered 

externally by receiving commands from laptops or PCs via defined interfaces. This allows the 

user to create application and problem oriented programs. The steering possibilities concern 

almost every component group of the tachymeter. The interfaces also allow outsourcing 

image processing algorithms and others to external devices, in order to not overstrain the 

internal processor of the total station. In the current configuration, the steering program for 

the Trimble S7 total station is 

implemented in the programming 

language C#. The image processing 

algorithms are implemented in 

Matlab©. The superordinate control 

program, which coordinates and 

synchronizes the data flow between 

the individual programming 

components is realized in the 

graphical programming language 

LabView from National Instruments. 

The implemented steering program 

lets the total station automatically 

move the telescope by pre-defined 

angles in vertical and horizontal 

direction, capture images and deploy 

reflector-less distance measurements. 

The flowchart of the specific total 

station steering program for object 

recognition and positioning is 

depicted in figure 2.  

After the image has been captured by the camera module, the feature extraction by the use of 

the SURF algorithm, according to section 2.2, is conducted. The extraction result in the 

reference image is depicted in figure 3. 

Accordingly, figure 4 (right) shows the extraction result in the test image. The image was 

captured from another perspective than the reference image. This should underline the 

performance of the SURF algorithm, where test images might be taken from a different 

perspective, but the matching robustness is still given. 
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Experiments showed that features, which are neither part of the object, nor part of the 

reference image, have been detected and extracted. Subsequently the matching step, according 

to section 2.3 is performed. At this point many features are matched faulty.  

Therefore the MSAC algorithm is applied to the first matching result. After the MSAC 

filtering, fewer matches are left. These matches are unique and correct (figure 4). 

Now the object recognition can follow up by the use of the pixel-to-pixel transformation, 

described in section 2.3. After this step, the object is uniquely identified in the test image.  

In the last step, telescope Hz and V angles are calculated from the pixel coordinates of the test 

image, accordingly to section 2.4. After the automatic aiming (setting of Hz and V angles by 

the servomotors), the reflector-less distance measurement is triggered and the position is 

obtained by equation (9-10). 

 

3.2 Example of Kinematic Image-based Object Tracking 

 

Tracking is generally understood in engineering geodesy as the process of following of 

moving objects with a certain sampling rate. The complete process is comprehensively 

explained in section 3 and further on, emphasis on the same process will be extended with the 

use of images. In contrast to using a reflector to signalize the object, using images offers 

versatility and flexibility of choosing which object should be tracked just by acquiring an 

image of it. This means that the object does not necessarily need to be accessible. First similar 

attempts and principle descriptions can be found in Bayer et al. (1989). 

Figure 3. Detected and extracted features in the reference image  marked by green circles (left); Detected and extracted 

features in the test image marked by green circles (right) 

Figure 4. Matching result after MSAC filtering (left: reference image; right: test image) 
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Specifically in the case of IATS used for object tracking, images are processed to constantly 

identify and track the desired object. Further on, this section will provide an insight into the 

image-based tracking principles that uses a SURF algorithm to identify the object in each 

frame (image) and then track it. 

Recently, a system comprised of a Leica TS 16i IATS and the control software running under 

Matlab© was developed at the Institute of Engineering Geodesy. The TS16i is a high 

precision tachymeter that includes an overview camera with a 5 MPixel CMOS sensor. For 

object identification and tracking a SURF algorithm is used. The camera has a 15,5°x11,7° 

field of view and is capable of capturing up to 30 frames per second. Four optical zoom levels 

are available in this case and can be used for tracking at different distances.  

Processing of the frames (images) takes place on an external computer that constantly 

receives and sends data to the IATS. The physical connection is realized through a wireless 

network and the developed program uses functions from the Image Processing Toolbox in 

Matlab. Examples of some of these functions are: image read, detect SURF features, extract 

features and match features. 

Leica instruments can be controlled from an external source only with the use of special 

commands, sent as an ASCII message and defined by the GeoCOM Protocol (Leica 2018b). 

Depending on the hardware integrated into the IATS, only some commands are available. In 

the present, the CAM and MOT commands are used for controlling the camera and 

servomotors of the IATS.  

In a first phase, the user needs to select the object that is going to be tracked. This can be done 

either by directly capturing an image of it and then cropping the area with the object or from a 

previously taken image. Once the object is selected, unique features (points) are identified on 

the object and will serve as basis for the tracking loop. Objects with a rich texture and varying 

geometry are the best suited in this case. This fact may be observed in figure 5, where the 

letters in the IIGS logo do not have the same amount of feature points as the building in the 

logo center. 

 

Figure 5 Original image (left) and identified feature points (right) 

The object center is then determined and from this point, the telescope is guided based on 

each processed frame. From the hardware point of view, this can happen at a rate of 30 fps or 

30 Hz, but due to practical reasons of processing speed, a rate of 10 fps has been chosen. 

Additionally a distance measurement can be made (without reflector) and the absolute 

coordinates of the object are obtained. This whole tracking process is currently limited to a 

0.5 Hz update rate, mainly caused by transfer and processing speed. Finally, the process can 

be summarized as seen in figure 6. 
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Figure 6 Tracking process flowchart 

 

4. QUALITY CONTROL OF TOTAL STATIONS IN KINEMATIC MODE 

USING A LASER TRACKER  

 

During measurements conducted by a total station it is not possible to evaluate the 

measurement quality, respectively the measurement accuracy, internally. Therefore external 

measurements by instruments with higher accuracy are required. Such an instrument is the 

laser tracker. Different manufacturers offer laser trackers systems, often in combination with 

additional accessories.  

The laser tracker API Radian has been used for the following experiment examples. The 

distance measurement accuracy of the laser tracker is 250-times higher in kinematic mode and 

500-times higher in static mode than that of the used robotic total station. The angle 

measurement accuracy is about 1.5-times better.  Figure 7 depicts this instrument and the two 

IATS with their properties for a straightforward comparison. 
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Figure 7 Overview of the used measuring systems (Leica 2018a ; Trimble 2018; Automated Precision inc. 2018) 

In the object tracking example, the regular laser tracker reflector SMR (Spherical Mounted 

Reflector) (Automated Precision inc. 2018) was used.  

In order to test the system’s performance, a target has been placed on a small trolley that is 

moving on a miniature railway and tracked during the movement. The reference is given by a 

laser tracker measurement of a reflector placed on the exact same axis of the trolley (Figure 

8). For both kinematic measurements the object was manually shifted. 

 

Figure 8. Moving trolley with laser tracker reflector (SMR) (left) and the target with feature points as identified by the IATS (right) 

The results are further presented and the differences between the coordinates obtained from 

laser tracker and IATS can be observed in figure 9. A systematic deviation is firstly noticeable 

in comparison to the tracker measurement. After shifting the tracker coordinates by 5 mm in 

the X direction, which is firstly a manual correction, a plausible comparison may be 

conducted. Consequently the tracker coordinates were fitted to a 4th degree polynomial 

function and the individual distances from the IATS coordinates to this regression line were 

computed. A mean value of 0.6 mm for lateral deviation was achieved. 
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Figure 9 Differences between IATS and Laser Tracker measurement of the same reference line 

Future improvements foresee the identification of this systematic effect and the usage of more 

efficient image processing tools in combination with a real-time industrial controller unit like 

the CompactRIO System from National Instruments that would help reduce latency time. 

 

5. CONCLUSION 

 

New features of IATS, the built-in cameras are highlighted in this contribution. These 

cameras open the way to image processing and object recognition. In this contribution the 

advances in object detection and tracking using image processing techniques like e.g. the 

well-known SURF and the SIFT algorithm are presented. The algorithms have been 

implemented on high-end total stations available on the market. The results are encouraging, 

especially with respect to the measurement accuracy. 

The expected accuracy will be less than one mm in tracking mode if the systematic effects of 

the evaluation procedure are eliminated. The measurement accuracy is determined using a 

laser tracker delivering accuracies around 10 μm level for distance measurements. The 

tracking rate needs to be increased in the future to assure a continuous homogeneous real-time 

tracking. When the algorithms will run in real-time with a tracking rate of 10 to 20 Hz, any 

objects, even if they are not equipped with a reflector, may be tracked. A remaining challenge 

is the synchronization of the totals stations with other sensors within sensor fusion algorithms. 

The authors will further work on the open issues and see the results as a valuable input for the 

research within the DFG Research Cluster of Excellence “Integrative Computational Design 

and Construction for Architecture” that will start in 2019 at the University of Stuttgart. 
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