

Developments in Geodesy from IAG Perspective and its Contribution to the Societal Benefit Areas (SBA) of GEO

Harald Schuh - IAG President

Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences

Hermann Drewes - IAG Secretary General

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) of Technische Universität München

Hanoi, 24th of April, 2019

Organisation of International Science

International Science Council (ISC) (2018: merger of ICSU and ISSC) **Social Sciences** Sciences: IAU, ICA, IGA, ... **IUGG** International Union of Geodesy and Geophysics (IUGG) **IACS IAGA IAPSO** IAHS IAG **IAMAS IASPEI IAVCEI International Association of Geodesy (IAG):** 71 Member countries Council: Representatives of the member countries Executive Committee: 16 members (elected by the Council) Bureau: Administrative work **Office**: Management (Secretary General)

IAG Scientific Structure 2015 – 2019

Bureau

President: Harald Schuh, Germany

Vice-president: Zuheir Altamimi, France

Secretary General: Hermann Drewes, Germany

Commissions

1 Reference Frames (*G. Blewitt*, US)

2 Gravity Field (*R. Pail*, DE)

3 Geodynamics (*M. Hashimoto,* JP)

4 Applications (*M. Santos*, CA)

Inter-Commission Committee on Theory (*P. Novák*, CZ)

Scientific Services

Geom.:

IERS

IGS

Gravim.:

IGFS

BGI

ICGEM

General:

BIPM

IDS

ILRS

IVS

IDEMS

IGETS

ISG

PSMSL

(Representatives in the EC: R. Neilan, US, R. Barzaghi, IT, A. Nothnagel, DE)

Global Geodetic Observing System (GGOS) (R. Gross, US)

Communication and Outreach Branch (COB) (*J. Ádám,* HU)

(EC Members at Large: Y. Dang, CN, M. C. Pacino, AR; Past President: Ch. Rizos, AU)

Mission and objectives of the IAG

The **mission** of the IAG is the **advancement of geodesy** by

- furthering geodetic theory through research and teaching,
- collecting, analysing, modelling and interpreting observational data,
- by stimulating technological development and
- providing a consistent representation of the figure, rotation, and gravity field of the Earth and planets, and their temporal variations.

The **objectives** of the IAG are to achieve the mission by **studying all geodetic problems related to Earth observation and global change**, i.e.:

- Definition, establishment, and maintenance of global and regional reference systems for interdisciplinary use;
- Gravity field of the Earth;
- Rotation and dynamics of the Earth and planets;
- Positioning and deformation;
- Ocean, ice and sea level.
- Atmosphere and hydrosphere.

Commission 1 "Reference Frames"

1.1 Coordination of Space Techniques

- Co-location using clocks and new sensors: New site ties concepts
- Performance simulations and architectural trade-off (of the ITRF)

1.2 Global Reference Frames

- IERS Conventions (2010): update will come soon

1.3 Regional Reference Frames

- EUREF, SIRGAS, NAREF, AFREF, APREF, Antarctica
- Time-dependent transformations between reference frames

1.4 Interaction of Celestial and Terrestrial Reference Frames

- Consistent realization of ITRF, ICRF and EOP: new ICRF3 (only IAU)

WG1: Site survey and co-location

WG2: Modelling environmental loading effects

WG3: Troposphere ties

Commission 2 "Gravity Field"

2.1 Gravimetry and Gravity Network

- Absolute and superconducting gravity measurements

2.2 Methodology for Geoid and Physical Height Systems

- Integration and validation of local geoid estimates

2.3 Satellite Gravity Missions

- GRACE Follow-On (GRACE FO) mission launched on May 22, 2018

2.4 Regional Geoid Determination

- Europe, South, N & Central America, Africa, Asia-Pacific, Antarctica

2.5 Satellite Altimetry

- New International Altimetry Service (under construction)

2.6 Gravity and Mass Transport in the Earth System

- Variation of groundwater, melting of ice, ...

WG: Relativistic Geodesy: Towards New Geodetic Techniques

Commission 3 "Earth Rotation and Geodynamics"

3.1 Earth Tides and Geodynamics

- International Geodynamics and Earth Tide Service (IGETS), 2017

3.2 Crustal Deformation

- New SC3.2 Volcano Geodesy (jointly with IAVCEI), 2019

3.3 Earth Rotation and Geophysical Fluids

- Global mass transport, Earth rotation and low-degree gravity change

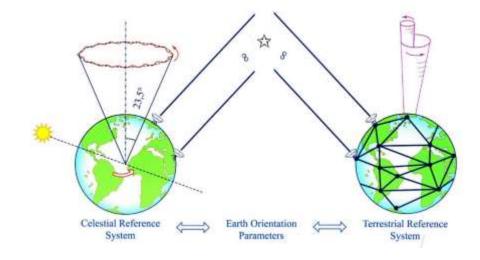
3.4 Cryospheric Deformations

- Glacial Isostatic Adjustment (GIA) research

3.5 Tectonics and Earthquake Geodesy

- Joint Sub-commission planned with IASPEI, 2019

JSG1: Intercomparison of Gravity and Height Changes


JWG1: Theory of Earth Rotation and Validation

JWG2: Constraining Vertical Land Motion of Tide Gauges

Challenges of geodesy to rotation & geodynamics

- Prove consistency of the ICRF3 (released by IAU 2018) with ITRF;
- Model effects of mass displacements (atmosphere, hydrosphere and solid Earth) on Earth rotation

NEW:

- For geodynamics research, establish new inter-association joint (Sub-)commissions or IAG Intercommission Committees, ICC):
 - With IAPSO ("marine geodesy")
 - With IASPEI ("seismo-geodesy")
 - With IAVCEI ("volcano-geodesy")
 - With IACS ("cryosphere geodesy")
 - New ICC on "Geodesy for climate research", approved
 - New ICC on "Quantum technology and new sensors", approved

Commission 4 "Positioning and Applications" (links to FIG, Commission 5)

4.1 Emerging positioning technologies and GNSS augmentation

- Multi-sensor systems Indoor positioning and navigation
- 3D point cloud monitoring Robust positioning for urban traffic

4.2 Geo-spatial mapping and geodetic engineering

- Mobile mapping technologies Geodesy in mining engineering
- Mobile health monitoring Building information modelling

4.3 Atmosphere remote sensing

- Iono-atmosphere coupling Real-time iono-/atmosph. monitoring
- Multi-dimens. Ionosphere Impact on GNSS-positioning
- Ionosphere scintillations Troposphere tomography

4.4 Multi-constellation GNSS

- Integrity monitoring for PPP

WG1: Biases in multi-GNSS data processing

WG2: Integer ambiguity resolution for multi-GNSS PPP and PPP-RTK

Inter-Commission Committee on Theory

Joint Study Groups with Commissions / Services

- 10: High-rate GNSS
- 11: Multi-resolution aspects of potential field theory
- 12: Methods for recovery of high-resolution gravity field models
- 13: Integral equations of potential theory for continuation and transformation of classical and new gravitational observables
- 14: Fusion of multi-technique satellite geodetic data
- 15: Regional geoid/quasi-geoid modelling for sub-centimetre accur.
- 16: Earth's inner structure from geodetic and geophysical sources
- 17: Multi-GNSS theory and algorithms
- 18: High resolution harmonic analysis & synthesis of potential fields
- 19: Time series analysis in geodesy
- 20: Space weather and ionosphere
- 21: Geophysical modelling of time variations in deformation & gravity
- 22: Definition of next generation terrestrial reference frames

IUGG

IAG Services

IERS: International Earth Rotation and Reference Systems Service

IDS: International DORIS Service

IGS: International GNSS Service

ILRS: International Laser Ranging Service

IVS: International VLBI Service

IGFS: International Gravity Field Service

BGI: Bureau Gravimetrique International

ICGEM: International Centre for Global Earth Models

IDEMS: International Digital Elevation Models Service

IGETS: International Geodynamics and Earth Tide Service

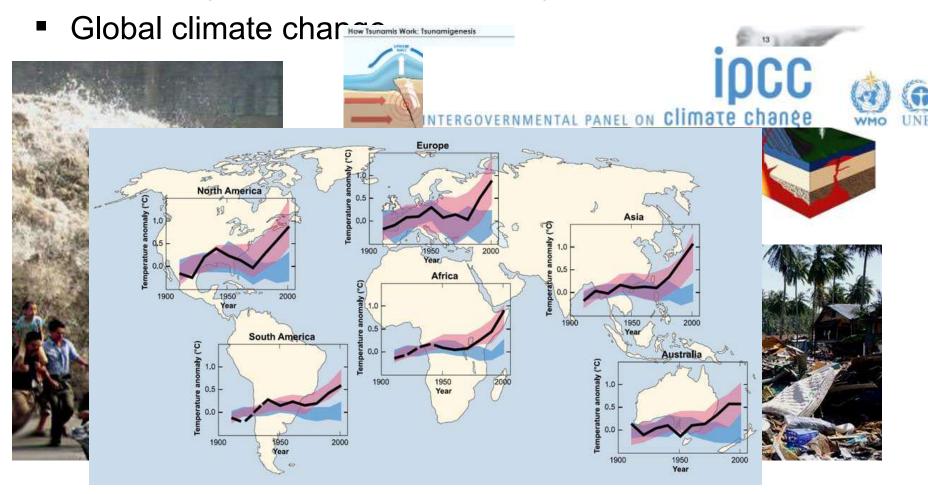
ISG: International Service for the Geoid

PSMSL: Permanent Service for Mean Sea Level

IAS: International Altimetry Service (under construction)

BIPM: Bureau International des Poids et Mésures

Gravimetry


Geometry

Ocean

New challenges in geosciences

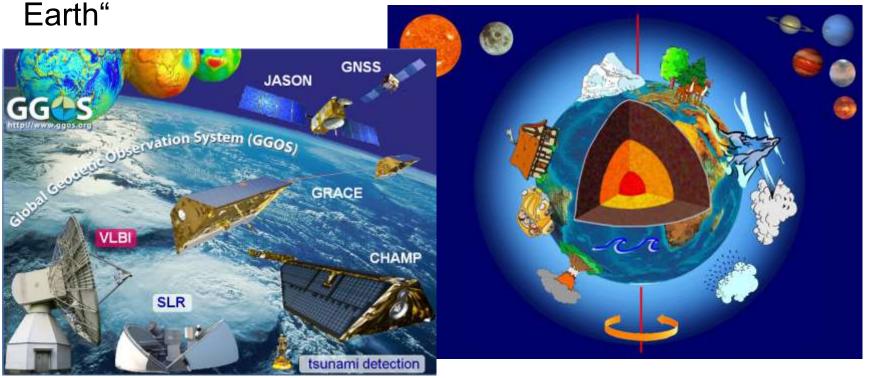
- Increase of natural disasters (e.g. typhoons, flooding, ...)
 - Strong demand for prediction and warning

GGOS today

IAG Bylaws 1(d)

"The Global Geodetic Observing System works with the IAG components to provide the geodetic infrastructure necessary for monitoring the Earth system and global change research."

The vision of GGOS is


"Advancing our understanding of the dynamic Earth system by quantifying our planet's changes in space and time."

Approaches of GGOS

- combination and integration of all available observations, methods, ...
- combine physical measurements and geometric techniques

improve our understanding of the interactions in "System

GGOS – general goals

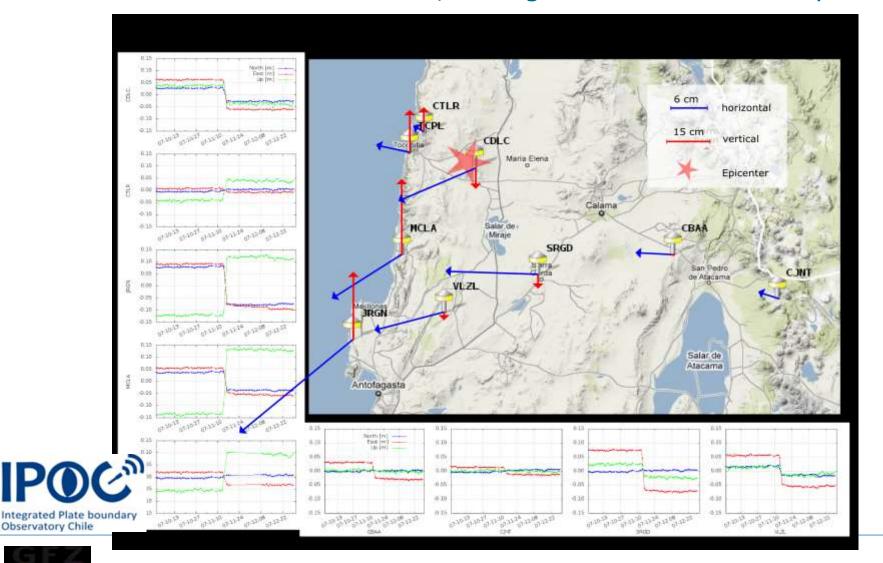
- 1 mm position and 0.1 mm/yr velocity accuracy on global scales for the ITRF
- continuous measurements (time series of EOP, station positions and baselines)
- measurements in near real-time
- highest reliability and redundancy
- low cost for construction and operation of geodetic infrastructure

The Global Geodetic Observing System (GGOS)

By its contribution to the GEO **Societal Benefit Areas (SBA)** GGOS shall benefit science and society by providing the foundations upon which advances in Earth science and applications are built.

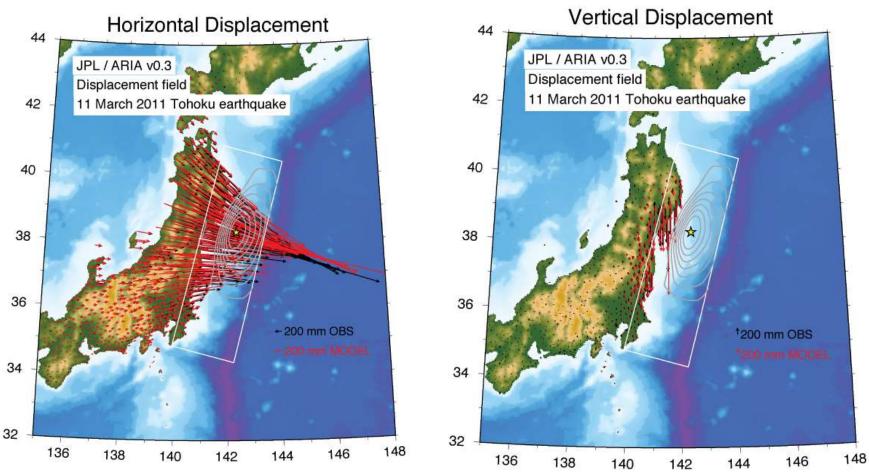
The Global Geodetic Observing System (GGOS)

GGOS shall benefit science and society by providing the foundations upon which advances in Earth science and applications are built.


Geodesy's contribution to disaster research

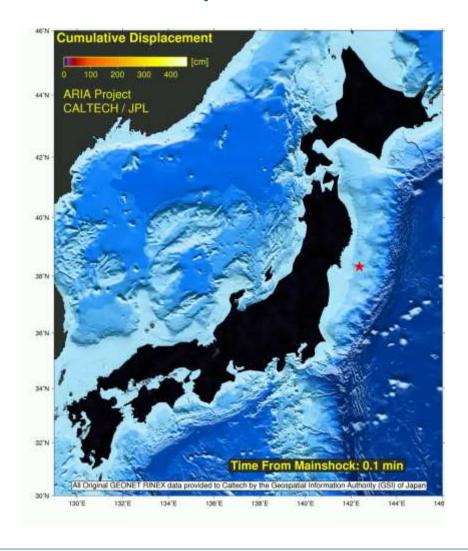
GNSS seismology

monitor deformations before, during and after the Earthquake



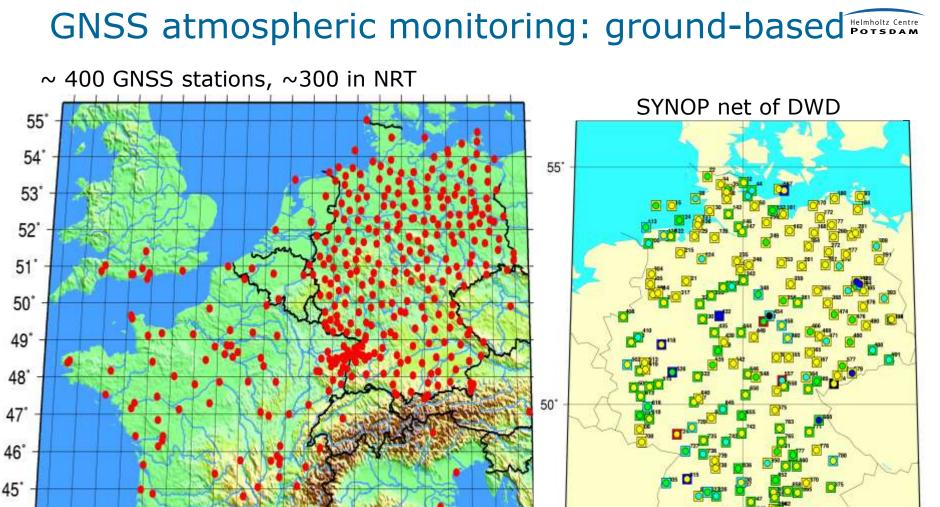
M9.0 Tōhoku earthquake - March 11, 2011

Data source: GEONET, Geospatial Information Authority (GSI) Japan


processed by: Jet Propulsion Laboratory (JPL) und Caltech

M9.0 Tōhoku earthquake – March 11, 2011 Goos

ftp://sideshow.jpl.nasa.gov/pub/usrs/ARIA/


The Global Geodetic Observing System (GGOS)

GGOS shall benefit science and society by providing the foundations upon which advances in Earth science and applications are built.

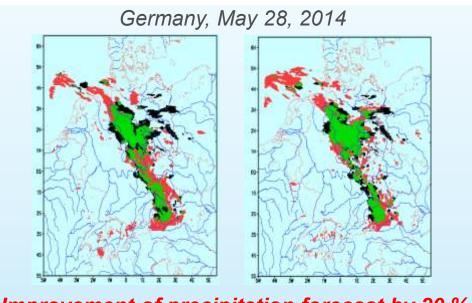
Geodesy's contribution to weather research

GFZ

355356357358359°0° 1° 2° 3° 4° 5° 6° 7° 8° 9° 10°11°12°13°14°15°

45°

44°


Standard deviation

Bias [0.1 hPa]

GNSS Meteorology at GFZ

Weather Forecast

Improvement of precipitation forecast by 20 %

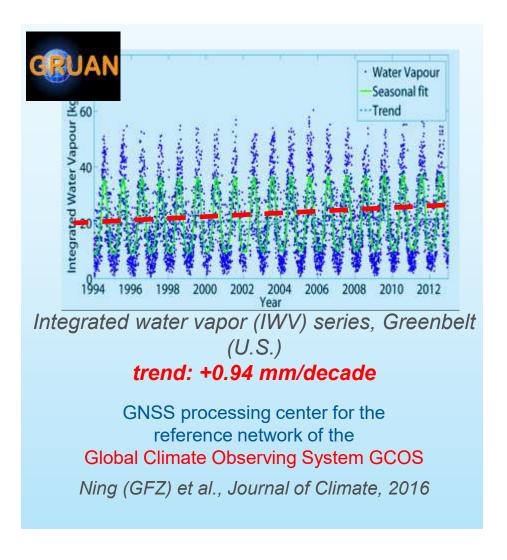
First GNSS processing center world-wide that operationally provides atmospheric slant data (humidity) to weather services (DWD, ...)

Zus (GFZ) et al., RS, 2015

The Global Geodetic Observing System (GGOS)

GGOS shall benefit science and society by providing the foundations upon which advances in Earth science and applications are built.

Geodesy's contribution to climate research



GNSS Meteorology at GFZ

Climate Research

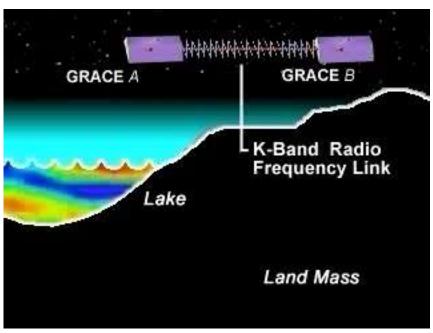
The Global Geodetic Observing System (GGOS)

POTSDAM

GGOS shall benefit science and society by providing the foundations upon which advances in Earth science and applications are built.

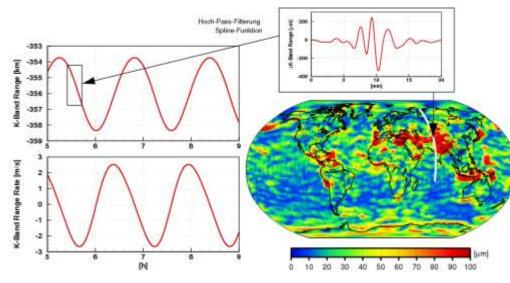
Geodesy's contribution to water research (global hydrology)

GRACE and GRACE-FO Twin Satellite Missions


GRACE = Gravity Recovery and Climate Experiment (NASA / DLR+GFZ, 17.3.2002- Oct. 2017) GRACE-FO (NASA / GFZ, launched on May, 22nd, 2018) The twin Satellites are the Experiment!

GRACE Measurement Principle

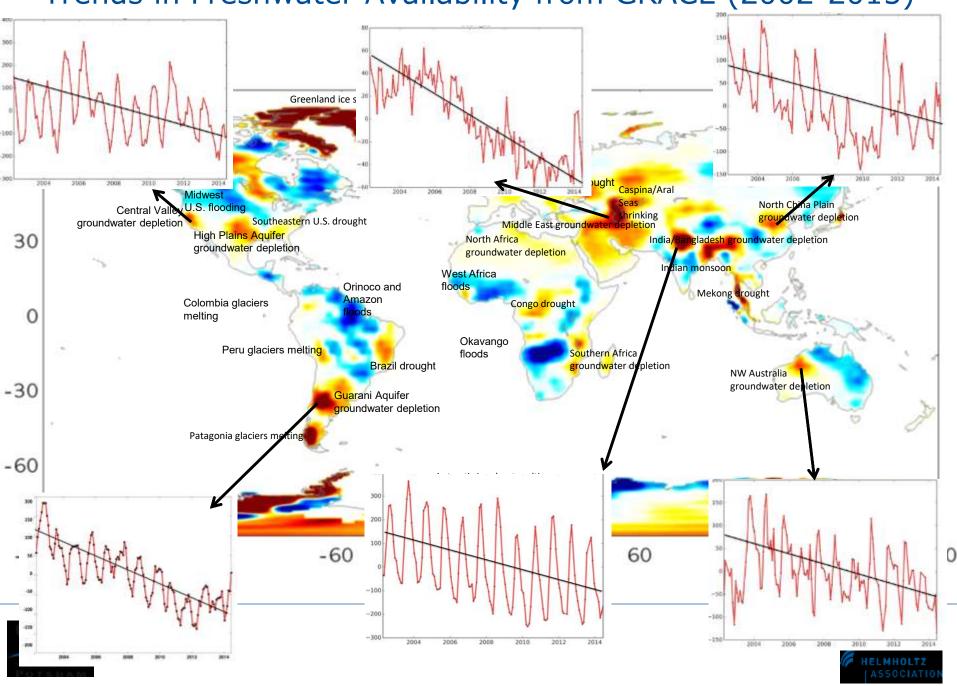
 $s = 220 \pm 50 \text{km}$


 σ_s = few μ m (a tenth of the thickness of a human hair) resp.

 $\sigma_s/dt = 100$ nm/s

Left: 1/rev separation change (primarily flattening of the Earth): ±2km

Right: Observed mass change related


distance variation: $\pm 200 \, \mu m$

Trends in Freshwater Availability from GRACE (2002-2015)

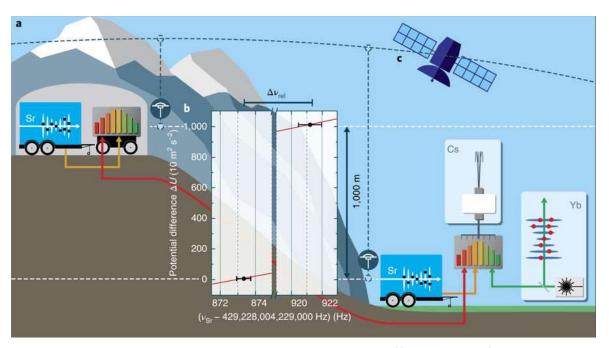
IAG/IUGG General Assembly Montreal, Canada, July 8 - 19, 2019

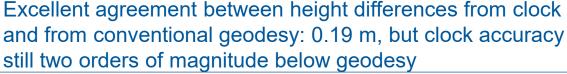
6 IAG Symposia

- G01 Reference systems and frames;
- G02 Static gravity field and height systems;
- G03 Time variable gravity field;
- G04 Earth rotation and geodynamics;
- G05 Multi-signal positioning, remote sensing and applications;
- G06 Monitoring and understanding the dynamic Earth with geodetic observations.
- 8 Joint Symposia with other associations (led by IAG)
- **20 Joint Symposia with other associations (sponsored by IAG)** (led by IACS, IAGA, IAHS, IAMAS, IAPSO, IASPEI, IAVCEI)
- 9 Union Symposia (co-organized by IAG) (led by IUGG or IUGG Commissions)

Maintain awareness of innovation and of technological developments relevant to geodesy

Example:


Using current developments in quantum technology, such as optical clocks for geodesy and geophysics, e.g. for height measurements


Future research tasks (a)

Geodesy and metrology with transportable optical clocks

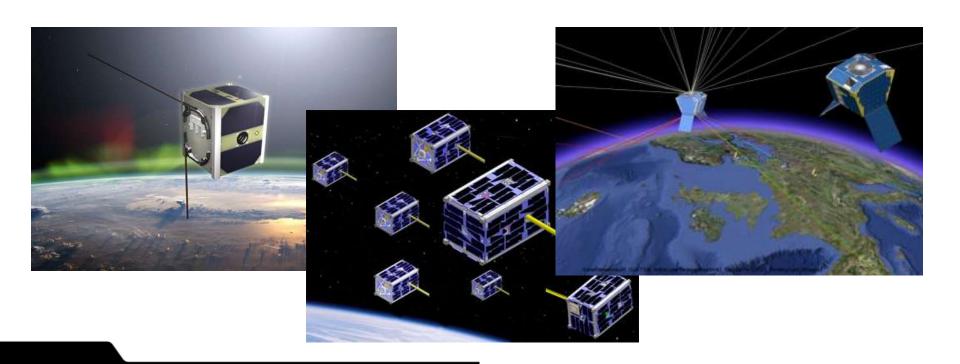
Authors: Jacopo Grotti,..., Christian Voigt (GFZ), ...

Nature Physics, 12 Feb 2018, doi:10.1038/s41567-017-0042-3

From: An optical clock to go, summary on the article by Andrew D. Ludlow, *Nature Physics*, News & Views, published on 13 Feb 2018

Future research tasks (b)

 'Citizen Science': e.g. low-cost mass sensors transmitting geodetic and geophysical data from billions of points to central units for continuous processing ('Big Data')



Future research tasks (c)

- Rapid development in satellite technology
 - swarms of low-cost mini-, micro-, nano-, pico-, and even smaller satellites
 - soon thousands of commercial communication satellites (Samsung, Boeing, SpaceX, ...) that can also be used for navigation and positioning

Thank you very much for your attention!

Invitation to IAG Membership via IUGG

All geodesists are invited to become an individual member (https://www.iag-aig.org or https://iag.dgfi.tum.de). It is free of charge for all (undergraduate ... PhD) students!

Thank you for your attention! ¡Gracias por su atención!