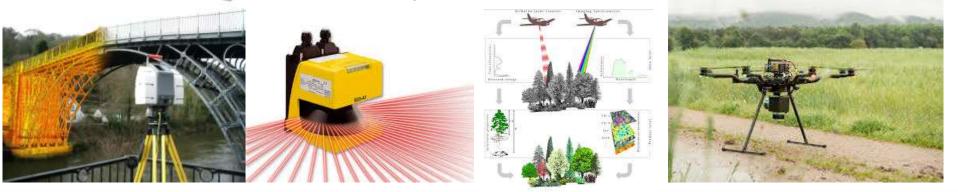


THE MAPPING ACCURACY OF LOW-COST UAV-BASED LASER SCANNER SYSTEM: A CASE STUDY OF HOKUYO UTM30LX LASER SCANNER

Anh Thu Thi Phan¹, Kazuyoshi Takahashi²

¹ VietNam National Uinversity- Ho Chi Minh City University of Technology
² Nagaoka University of Technology, Japan

ORGANISED BY



LASER SCANNING

- Laser scanning is the controlled deflection of laser beams, visible or invisible.
- The scanner rapidly captures the surface shape of objects, buildings and landscapes by taking a distance measurement at every direction.

RESEARCH IDEA

- Develop a small UAV- based laser scanner system for monitoring agricultural crops
 - This system can fly at low altitude and collect information with high resolution for instant crop condition monitoring.
 - The whole system is easy to be carried
 - The developed system incurs the lowest possible cost

The mapping accuracy of develop UAV- based laser scanner system must be test

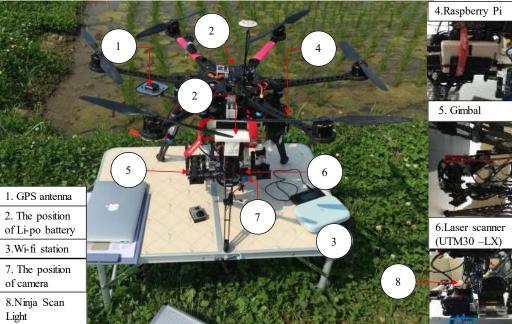


FIG WORKING WEEK 2019 22–26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

SYSTEM DESCRIPTION

The hex-rotor aircraft DJI S800 with the 3axis gimbal (TAROT 5D) carrying the Hokuyo UTM30LX laser scanner,

Table 1: UAV- based laser scanner system components

Components	Prices (USD)	Weight (kg)
DJI S800	3000	2.60
Hokuyo UTM 30LX	3300	0.37
TAROD 5D	1100	0.20
Sensor-COM GPS	50	
NinjaScan- Light	17	0.02
Raspberry Pi 2	35	0.05
Turnigy 5000mAh 6S 40C (Lipo)	60	0.84
Turnigy 3300mAh 4S 30C (Lipo)	30	0.39

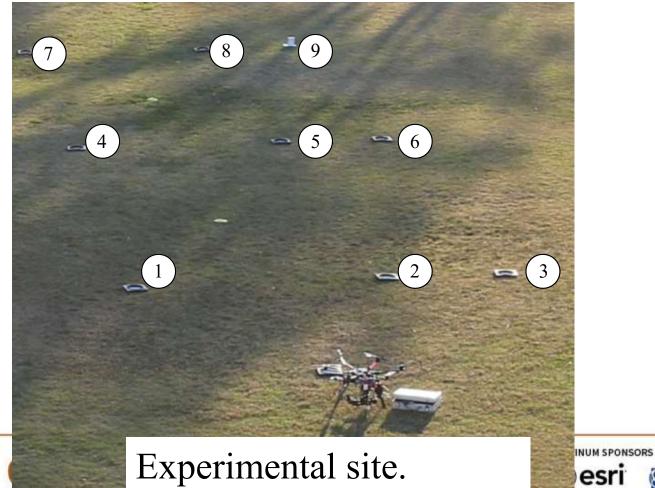

ORGANISED BY

FIG WORKING WEEK 2019 22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

EXPERIMENTAL SITE

ORGANISED BY

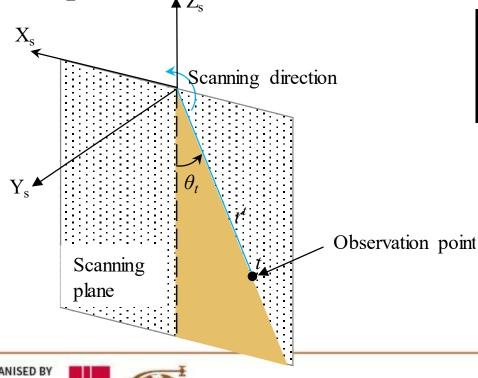
esri STrimble.

FIG FIG WORKING WEEK 2019 22-26 April, Hanoi, Vietnam "Geospatial Information for a Smarter Life and Environmental Resilience"

METHODOLOGY

3D laser point clouds generation

- Computation of the GPS antenna coordinates in Japanese mapping coordinate system
- Generation of the 3D coordinates of laser scanning points in laser scanner coordinate system
- Transformation of laser scanner coordinates (LSC) to Japanese mapping coordinates

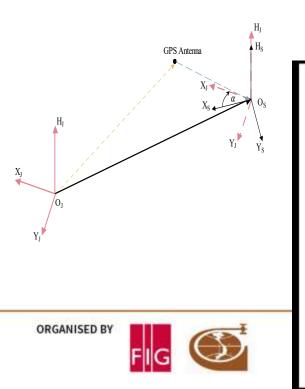


METHODOLOGY

Generation of the 3D coordinates of laser scanning points in laser scanner coordinate system

Where: P_t^s : The position of target scanning point t in laser scanner coordinate system r^t: The observed range θ_t : The scanning angle

HE SCIENCE OF WHER



METHODOLOGY

• Transformation of laser scanner coordinates (LSC) to Japanese mapping coordinates

Where:

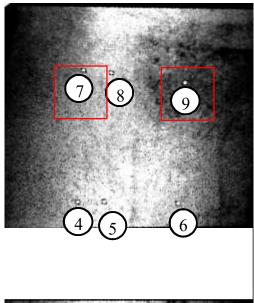
 P_t^J : 3D coordinates of laser scanning point in JMCS

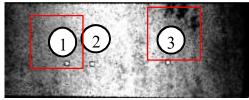
 P_{GPS}^{J} : The 3D coordinate of GPS antenna in JMCS O_{GPS}^{S} : The offset vector from GPS antenna position to original of LSCS

 $(P_{GPS}^{J} + O_{GPS}^{S})$: shows the 3D coordinate of the mechanical origin of the line laser scanner in JMCS

 R_s^J : The LSCS to JMCS rotation matrix

 P_t^s : The 3D coordinates of laser scanning points in LSCS


FIG WORKING WEEK 2019 22–26 April, Hanoi, Vietnam

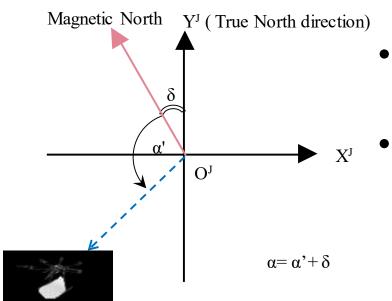

"Geospatial Information for a Smarter Life and Environmental Resilience"

METHODOLOGY

Point clouds accuracy assessment

- Non-applying translation transformation,
- Applying Helmert transformation with 4 ground control points.

PLATINUM SPONSORS



ORGANISED BY

RESULTS

Trajectory determination

- The rotation angle α ranges from 142.0480⁰ to 146.9768
 - The flight direction was identified with the consideration of -6.884 degrees of magnetic declination angle

Flight direction

FIG BORKING WEEK 2019 22–26 April, Hanoi, Vietnam "Geospatial Information for a Smarter Life and Environmental Resilience"

RESULTS Point cloud accuracy

Non-applying translation transformation

	MAE (m)		Standar	d deviatio	n (m)
Horizontal	Vertical	Spatial	Horizontal	Vertical	Spatial
1.19	1.09	1.62	0.10	0.09	0.13

Applying Helmert transformation with 4 ground control points

			—
ID	dX (m)	dY(m)	dH (m)
MP2	-0.053	-0.016	-0.023
MP4	0.114	0.020	0.047
MP5	0.119	0.037	0.039
- MP6	0.110	0.097	0.023
MP8	0.018	-0.037	-0.011
			THE SCIENCE OF WHERE'

CONCLUSION

Achievement

The horizontal accuracy identified with GPS and magnetic data were 1.19 ± 0.10 m and 1.09 ± 0.09 m

Limitataion

- Missing scanning lines
- Unstable flight altitude
- The horizontal attitude of laser scanner is not easy to maintained in whole flight

