

COMPARATIVE ANALYSIS OF GOOGLE EARTH DERIVED ELEVATION WITH IN-SITU TOTAL STATION METHOD FOR ENGINEERING CONSTRUCTIONS

Njike CHIGBU¹²; Maduabughichi OKEZIE¹; Ikenna Donald ARUNGWA² & Chima, O. Ogba²

"Geospatial Information for a Smarter Life and Environmental Resilience"

INTRODUCTION

- Physical & Infrastructural Development compulsorily require:
 - Information about the Earth's topography
 - Height/Elevation of the bare earth
- Such data is used for construction of:
 - Road, Rail, Bridges, Dams etc
- And other scientific studies

INTRODUCTION (Cont'd)

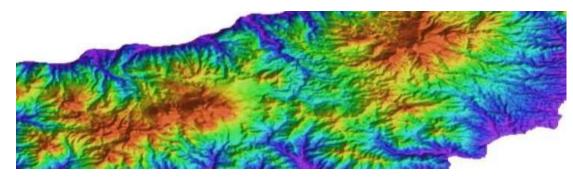
- Google Earth (G.E.) data offers an alternative amidst other satellite derived elevations sources
- G.E. data:
 - Easy to access
 - Readily available
 - May replace traditional methods of height determination measurement (levelling); with improved accuracy.

"Geospatial Information for a Smarter Life and Environmental Resilience"

INTRODUCTION (Cont'd)

Relevant questions by users and potential users

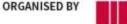
- What are the size of errors inherent in the data?
 - Globally
 - Locally (Aba, Nigeria)
- How useful is G.E. height ?
- To what extent can G.E. height be used the given the level of error in it?



INTRODUCTION (MOTIVATION)

- No report of the global accuracy of G. E. elevation available in public domain
- Only one research so far conducted in Nigeria (Richard & Ogba, 2017)
 - Focused on the morphometric potential without assessing the altimetric quality of G.E. data.

"Geospatial Information for a Smarter Life and Environmental Resilience"


Materials & Methods (Area of Study)

•The study area is at Aba metropolis in Abia State Nigeria

•A low-lying land south-East of

•Nigeria located between: •7°23'41.99" - 7°27'32.85"E •5°09'11.49"- 5°11'34.82"N

"Geospatial Information for a Smarter Life and Environmental Resilience"

Materials & Methods (Tools)

S/No	Software	Remark
1	ESRI ArcGIS 10.5	Used for plotting and conversion of points to KML format
2	SPSS version 23	Used for statistical analysis
3	TCX	For extraction and update of height of points
4	Google Earth Pro	Platform for obtaining G.E. elevation data
5	Microsoft Excel	For data organization and profile plotting

FIG FIG WORKING WEEK 2019 2-26 April, Hanoi, Vietnam "Geospatial Information for a Smarter Life and Environmental Resilience"

Materials & Methods (Data)

• Longitudinal Profile of a road

• Extracted equivalent from G. E. using TCX

98.0 97.0	1																_		-	_	-	-	-		-				-	-	2		>	-	-	-	1				
96.0 95.0 94.0 93.0		11				_	-	111						1	1	2	_														-	~					1	2			K
HAINAGE(KM)	8	821	1740	1260	002.1	0001	1800	1940	1 800	1200	(300	1300	1,940	1960	1 960	2000	2020	2040	2,000	2,000	2,100	2120	2140	21100	2100	2,220	2,240	2,260	2260	2,300	2,300	2340	2,000	2300	2,400	2420	2440	2,400	2,480	2,600	2500
					-										1.1.1				-																						-
ESIGN LEVEL 4)	95.220	85,020	020 MS	018.46	94.500	00014	54.245	94776	94,195	94.115	04.295	94.555	84.045	95,239	101,700	500196	107 10	121.8	99756	2015	528 56	997.068	61 255	87.510	018.12	009/25	87,000	97.79	07.530	000726	07.260	07.120	00076	06156	\$19156	66.645	595 108	90.246	94.845	65.415	65.105
GL (CENTRE)	95.220	04 KG	H COO	94500	1120	001.10	消ぎ	91545	94 005	599.65	94:103	11 265	94 500	34 905	05415	95.805	(ct 10)	10.270	(10.365	207 W	00 632	24 8 M	97 X 105	87.240	97.450	17 500	019.00	07.460	01.000	87,220	021.00	16.50	009 90	101.10	002-300	26.535	W 202	301 WE	141 141	85.405	6005
GL (LEFT)	94,530	01510	0000	93800	\$98.05	\$95.08	NS 765	93.565	9006	10205	82.738	34 (96)	SHL M	34.535	8778	818 58	100.00	90598	505 55	12.8	80.00	519.95	90.1.96	87.120	NAN W	11120	002.18	07220	0170	00196	067.00	015 36	009 90	001.00	\$15.90	502.98	9009	97.78	11.1	91.302	99605
		-	-	-	-			-		-	-		-		-		-	-		-	90010	28	8	8	6 8	2	8	3	0000	-	8	8	04059	2	548	18	149	901.90	818	113 16	1

"Geospatial Information for a Smarter Life and Environmental Resilience"

Materials & Methods Accuracy & Similarity indicators

- Accuracy indicators
 - Mean Error (ME)
 - Root Mean Square Error (RMSE)
 - Standard Deviation (Std Dev)
 - Mean Absolute Deviation

- Similarity indicators
 - Correlation analysis (Pearson)
 - Non-parametric correlation analysis
 - Spearman
 - Kendall's tau
 - Mann-Whitney U
 - T-Test

"Geospatial Information for a Smarter Life and Environmental Resilience"

Materials & Methods "Usefulness" indicators

Category of accuracy	Standards
Rough Leveling	Statutory Criterion
Ordinary Leveling	Statutory Criterion
Accurate Leveling	Statutory Criterion
Precise Leveling	Statutory Criterion

RESULTS & OBSERVATIONS

Both heights show some level of similarity:

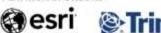
•They both report slightly varying range, mean, minimum & maximum height value

One may (at this point), want to conclude that clear distinction exist between the two elevations

	Ν	Range	Minimum	Maximum	Mean	Std. Deviati on
Total Station Height (m)	412	15.295	70.687	85.982	78.6707 5	5.15221 5
Google Earth Height	412	17	72	89	80.318	4.5646

"Geospatial Information for a Smarter Life and Environmental Resilience"

RESULTS & OBSERVATIONS (Cont'd)


The table shows the descriptive statistics of the results from the basic comparison between height from G.E. and Total station.

In general it can be said that G.E. data overestimates the topography of the profile by an average and maximum value of 1.65m and 8.89m respectively.

The positive mean error value indicates that majority of the errors are greater than zero. (supported by MAD Value "immune" to extreme values)

Therefore G.E. height values may be said to be positively biased along the profile path.

DESCRIPTIVE STATISTICS	VALUE
Mean	1.6472
Std. Error of Mean	0.1116
Median	1.5925
Std. Deviation	2.2661
Minimum	-5.295
Maximum	8.888
RMSE	2.7993
Median Absolute Deviation	1.7155

PLATINUM SPONSORS

HE SCIENCE OF WHER

"Geospatial Information for a Smarter Life and Environmental Resilience"

RESULTS & OBSERVATIONS (Cont'd)

Questions by users:

•How much similarity exists between the two datasets?

•How significant is this similarity

Pearson's value of 0.899 @ 0.01 level of significance indicates existence of a significant positive relationship

Kendall's tau and Spearman's rho; respective values of 0.705 and 0.878(@ 0.01 level of significance), indicate a significant relationship between datasets

Total Station Vs Go Val	e e e e e e e e e e e e e e e e e e e
Parametric	
Test	Value @ 0.01 level of significance
Pearson's	0.889
Non-Parametric	
Test	Value @ 0.01 level of significance
Kendall's Tau	0.705
Spearman's rho	0.878

HE SCIENCE OF WHERE

"Geospatial Information for a Smarter Life and Environmental Resilience"

RESULTS & OBSERVATIONS (Cont'd)

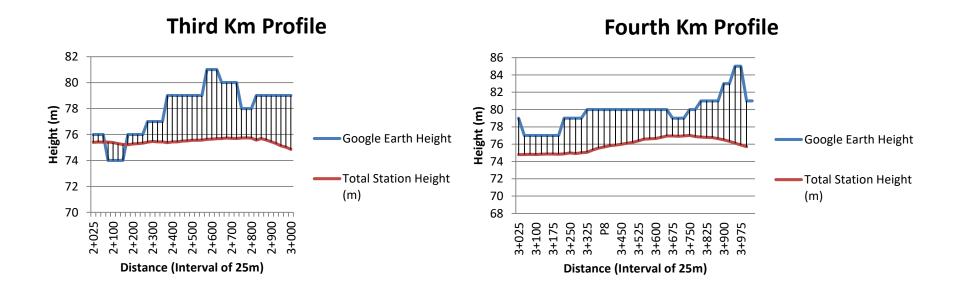
Judging by ρ (Sig) value, It is safe to state that *a statistically significant difference exist between the two datasets*

Total Station Height Value Vs Google Earth Height Value								
Assumption of Normal D	istribution							
Test	ρ (Sig) value							
t-Test for Equality of Means	0.000							
Without Assumption of Normal Distribution								
Test	ρ (Sig) value							
Mann-Whitney U	0.000							

Implication/Usefulness based on Inherent error

Different categories of accuracy for levelling operation													
	Rough Leveling	Ordinary	Accurate	Precise	Total	Length							
		Leveling	Leveling	Leveling	(km)								
Constant value	0.1	0.024	0.01	0.005	10.125								
Accuracy (m)	0.318	0.076	0.032	0.016									

Judging by the Mean Error and RMSE value of 1.65m and 2.79m (table 3.0) of the dataset, the G.E. height cannot be used as a sufficient replacement of heights obtained by conventional levelling method



"Geospatial Information for a Smarter Life and Environmental Resilience"

Profiles

CONCLUSION

- Datasets look similar: "Prima Facie"
- But significantly different from the perspective of "Robust & Rigorous" statistics
- G. E. height data *failed to meet minimum standard* for levelling data
 - Therefore, *cannot and should not* be used for planning and executing serious engineering projects, particularly within study area (Aba).

"Geospatial Information for a Smarter Life and Environmental Resilience"

THANKS FOR YOUR AUDIENCE

