

Evaluates the possibility of shallow water bathymetry mapping using optical satellite imagery

Present contents

- 1. Introduction
- 2. Research methods
- 3. Data and test areas
- 4. Research results
- 5. Conclusion

FIG WORKING WEEK 2019 22–26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

1. Introduction

- Vietnam has an internal marine area of 4,200 km²
- Coastline length 3.444 km
- There are 3,000 large and small islands and two archipelagos of Hoang Sa and Truong Sa

FIG FIG WORKING WEEK 2019 22–26 April, Hanoi, Vietnam "Geospatial Information for a Smarter Life and Environmental Resilience"

1. Introduction

- 1. Updating information chart, serving maritime navigation, ensuring people's activities.
- 2. Ensuring topography for national defense and security activities: Operation of military protection on island, serving rescue and rescue at sea.
- 3. Serving the construction of island projects: creek, jetty, island protection embankment, military works ...
- 4. Ensuring information to study other factors along the island: Sea environment, hydrology ...

FIG WORKING WEEK 2019 22–26 April, Hanoi, Vietnam

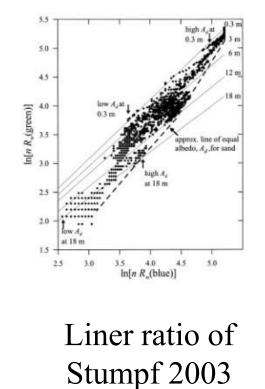
"Geospatial Information for a Smarter Life and Environmental Resilience"

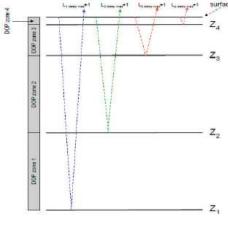
1. Introduction

- Manual depths survey by plumb line and rod
- RS methods:
 - + Acoustic RS
 - + Side Scan Sonar
 - + Bathymetry Lidar
 - + Satellite Altimetry
 - + Hyper spectral image
 - + Multi spectral image

FIG WORKING WEEK 2019 22–26 April, Hanoi, Vietnam

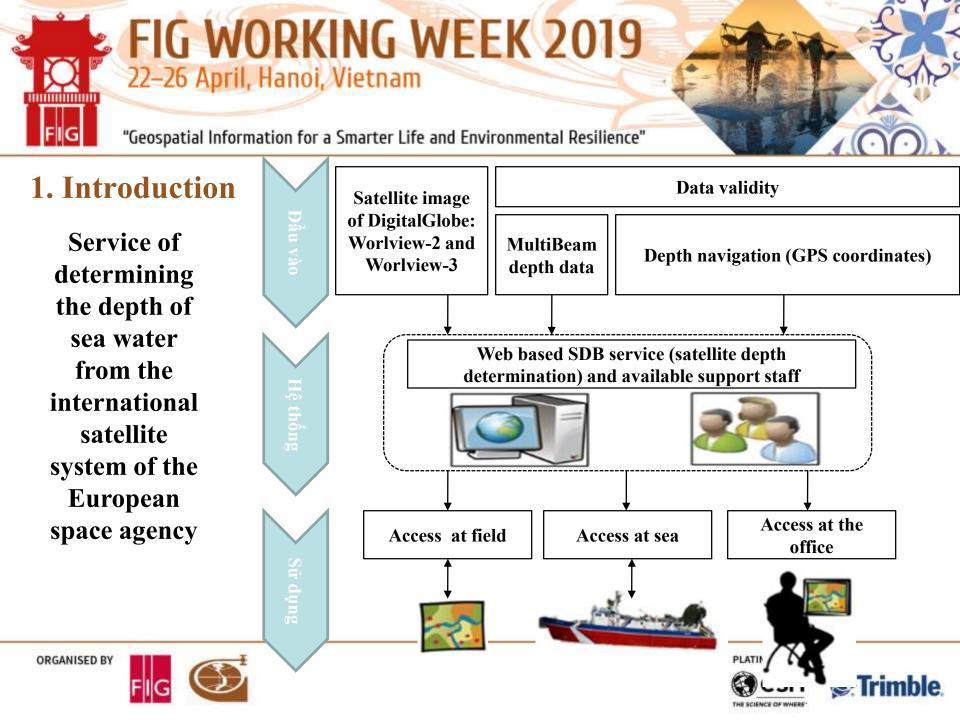
"Geospatial Information for a Smarter Life and Environmental Resilience"


1. Introduction


Studies in the World of MS images determine depth

ORGANISED BY

Liner band by David Lyzenga 1978, 1981, 1985, 2006



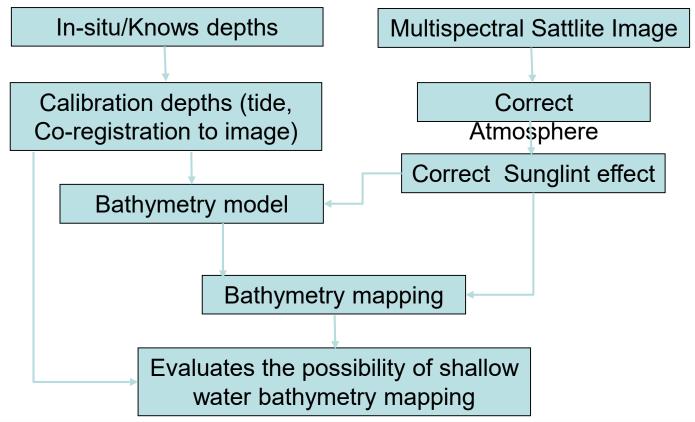

DOP of Jupp1989

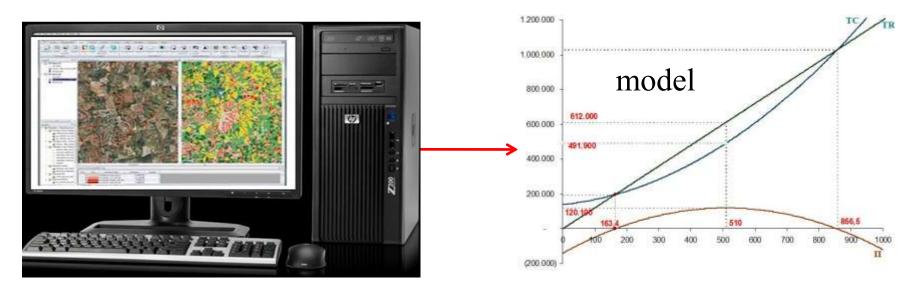
FIG MORKING Y/EEX 2019 22–26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental

We Seabed road

2. Research methods

Experimental data collection


Coral and sea grass

Experimental research, building models and processes for creating thematic maps (topography, some environmental factors)

Satellite Image

FIG CONTRACTING STATES APRIL HANOI, VIETNAM "Geospatial Information for a Smarter Life and Environmental Resilience"

2. Research methods

RS methods

Model method

The relationship between radiation and water depth according to Austin (1974):

$$L(z) = L(0) e^{-2kz} = L_{s} + L_{b}e^{-\alpha z}$$

Where L_s is deep water radiance with deep-> ∞ L_b is the bottom reflector

α is light attenuation coefficient in water

ORGANISED BY

$$\implies Z = \frac{1}{\alpha} \ln(L_b) - \frac{1}{\alpha} \ln(L_z - L_s) \text{ Where } L_z - L_\infty \ge 0$$

Lyzenga

$$Y_{i} = \sum_{j=1}^{N} A_{ij} X_{j} \text{ Where } X_{j} = \ln(L_{hj} - L_{\min sj})$$

$$\hat{h} = h_{o} - \sum_{j=1}^{N} h_{j} X_{j}$$

ORGANISED BY

Evaluates the possibility of bathymetry mapping Error of point position $\Delta_{s} = \Delta X^{2} + \Delta Y^{2}$

$$\Delta_{\text{position}} = \sqrt{\Delta_{\text{origin}}^2 + \Delta_s^2} \quad \text{Where:} \quad \Delta_{\text{origin}} = 0,5 \text{ (mm) * M}$$

Error of depth

$$\Delta_{z} = \sqrt{\Delta_{Z_origin}^{2} + \Delta_{z}^{2}} \quad \text{Where:} \quad \begin{array}{l} \Delta_{z} = Z(m) - Z(m) \\ \Delta_{Z_origin} = \text{Contour} \\ \text{Intervals/3} \end{array}$$

THE SCIENCE OF WHER

FIG WORKING WEEK 2019

"Geospatial Information for a Smarter Life and Environmental Resilience"

3. Data and test areas

- Sentinel-2A satellite image 16/6/2016

Control points data
+ Control points for Coregistration: 4

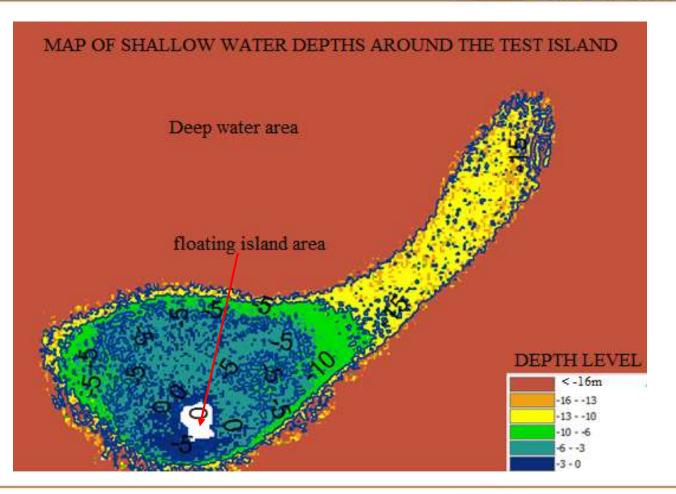
- + Position test points: 4
- + Depth control points build model: 25
- + Depth test points : 12

ORGANISED BY

4. Research results

 $\hat{h} = -16.39 * \ln(B2) + 17.26 * \ln(B3) - 0.13 * \ln(B4) - 9.47$

Parameters	Multiple R	R Square	Adjusted R Square	RMSE
Value	0.94	0.89	0.88	0.99



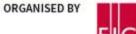


FIG WORKING WEEK 2019 22-26 Apríl, Hanol, Viettam

"Geospatial Information for a Smarter Life and Environmental Resilience"

4. Research results

4. Research results

TT	ΔΧ	ΔΥ	Δs	$\Delta_{ m origin}$	$\Delta_{ m position}$	Noted
1	8.32	9.13	12.3523	1	12.392	Gain scale 1:25.000
2	8.19	10.24	13.1123	1	13.150	Gain scale 1:25.000
3	8.77	6.25	10.7691	1	10.815	Gain scale 1:25.000
4	14.1	13.6	19.5900	1	19.615	Gain scale 1:50.000

FIG WORKING WEEK 2019 22-26 Aprili, Hanoi, Viettiam

"Geospatial Information for a Smarter Life and Environmental Resilience"

4. Research results

TT	Z	Z	Δ_z	Δ_{z_origin}	Δ_z	Noted
1	-0.5	-0.1	-0.4	0.33	0.518556	height between contours 5 m
2	-0.3	0.8	-1.1	0.33	1.148434	height between contours 5 m
3	-0.9	-1.6	0.7	0.33	0.773886	height between contours 5 m
4	-1.5	-0.9	-0.6	0.33	0.684763	height between contours 5 m
5	-3.2	-4.7	1.5	0.33	1.535871	height between contours 5 m
6	-4.7	-5.9	1.2	0.33	1.244548	height between contours 5 m
7	-5.5	-7.1	1.6	0.33	1.633677	height between contours 5 m
8	-6.9	-8.2	1.3	0.33	1.341231	height between contours 5 m
9	-9.6	-7.9	-1.7	0.33	1.731733	height between contours 10 m
10	-11.4	-9.1	-2.3	0.33	2.323553	height between contours 10 m
11	-13.6	-13.2	-0.4	0.33	0.518556	height between contours 5 m
12	-15.2	-14.6	-0.6	0.33	0.684763	height between contours 5 m

ORGANISED BY

5. Conclusion

- Using Sentinel 2 images can establish a depth map with an average scale of 1: 25,000 -1: 50,000, 5m contour

- Accuracy of the map depends on many factors such as the input satellite image resolution, the interference effect in the image acquisition process, the control point precision and the calculation model...

-The research results have solved the set objectives, as a basis for step by step research into the shallow seabed topography mapping from satellite imagery.

