IMPROVING ENUGU URBAN WATER SOURCING AND DISTRIBUTION USING GEOSPATIAL TECHNOLOGIES

Amos . I. Ugwuoti, Emmanuel .U. Onah and Oliver . C. Ojinnaka

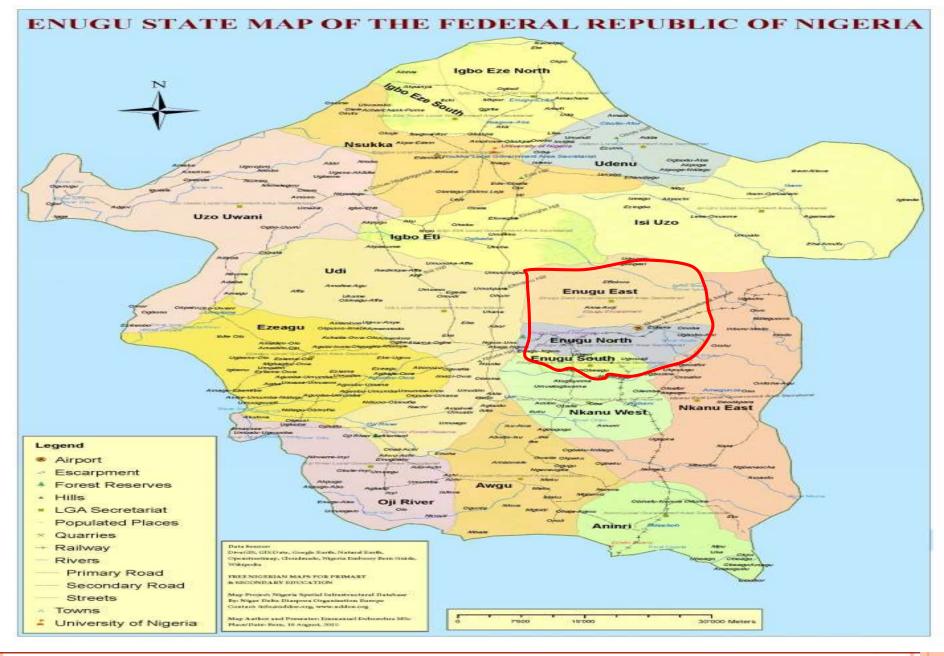
Presented by Amos Ugwuoti

INTRODUCTION

DATA ACQUISITION

- Map of the existing distribution network
- Records of water production and quantity supplied
- Surface water discharge measurement
- Population /census data of Enugu Metropolis
- Topographic Information (from LIDAR Image)
- Coordination of all the water facility locations within the interest area
- Underground water sourcing using ABEM terrameter

DATA MANAGEMENT AND PROCESSING


- **Application** of Geographic Information System in production of map showing the extent of distribution and locations of major piped water facilities in the interest area
- **Application of Arc GIS software in processing and extraction of digital terrain model form LIDAR image**
- •Re-designing the distribution pattern using EPANET modeling software
- •Application of Vertical Electrical Sounding (VES) to determine the aquifer that can supply underground water to augment the quantity obtained from existing sources

STUDY AREA

- ❖Enugu is the capital of Enugu State in Nigeria. It is located in South eastern Nigeria.
- ❖ It has a population of 722,664 according to the 2006 Nigerian census.
- ❖It is located between Lat. 06°, 26' and 06°, 30' N and Long. 07°, 27' and Long. 07°, 37' E and lies east of Niger Delta.
- ❖It stands on Udi hills at an elevation between 125m and 380m above mean sea level with intervening hills and valleys.
- ❖Its temperature lies between 20°C and 35°C with average range of rain fall of 8mm and 252mm

RESEARCH SIGNIFICANCE

S/N	WATER SOURCES	Designed capacity m ³	Actual volume	Actual volume (2015) m ³	Actual Volume (2016) m ³	Actual volume (2017) m ³	Actual volume (2018) m ³	Average volume day m ³	Average Volume litres
1	Eva (water Head)	4,500	1,747. 4	2,085	1,527.18	1,129	2,007.71	1,699.25 8	1,699,2 50
2	Oji	50,00	13,832	6,670	5,135	10,118	13,912.2	9,933.44	9,933,4 46

829

3 Ajalli

River

0

FIG 2019 Hanoi

4,400.17 4,514.09 4,514,0

92

77,00 8,300 5,614.29 3,427

S/N	WATER SOURCES	Designed capacity	Actual volume (2014) m ³	Actual volume (2015) m ³	Actual volume (2016) m ³	Actual volume (2017) m ³	Actual volume (2018) m ³	Average volume m ³	Average Volume Ilitres
4	9 th Mile (Old Road)	6,000	271	56.25	Nil	Nil	Nil	65.45	65,450
5	9 th Mile (bore Holes)	17,280	Nil	Nil	246.44	Nil	Nil	49.288	49,288
6	TOTAL	154,78	24,150.4	14,425.5	10,335.6	12,076	20,320.1	16,261.5 34	16,261,5 34

SUMMARY OF THE TABLE

- ✓ Only 16%, 9%, 7%, 8% and 13% for the year 2014, 2015 2016, 2017 & 2018 respectively of the designed/expected volume of water were supplied
- ✓ Hence, a total of 16,261.543m3 is supplied every day
- ✓ This according to the agency is as a result of water loses through pipe leakages, malfunctioning of existing facilities and rugged topography

THE GRAVE SITUATION

•Population projection from 2006 to 2018 for Enugu metropolitan area is **1,026,097**

This computation was done using linear population projection method of United Nations. (United Nations, 1974)

- •Quantity of water supplied per day = 16,261,534 litres
- Quantity of water supplied per capita per day = 15.8 litres

WHO's STANDARD ON DOMESTIC WATER USAGE

World Health Organization's (WHO) specification on the minimum quantity of water needed per Capita per day is 150litres; (10 litres)for Drinking, (20L) for Cooking, (30L) for Personal washing, (40L) for Washing of clothes and (50L) for Cleaning of the house (Reed, 2005)

Where do we classify 15.8 L currently supplied per person per day?

Possibly for drinking alone

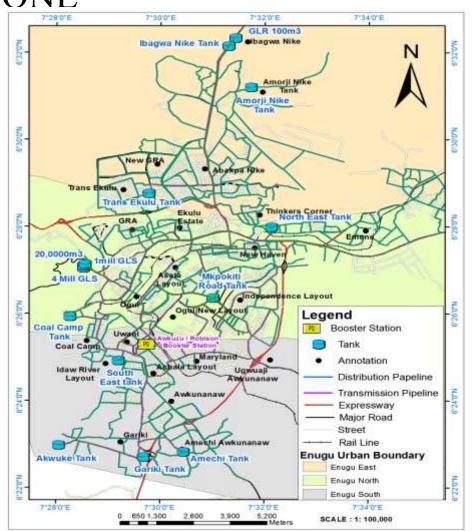
To supply 150 litres as required, additional 137,653,016 litres is needed to be supplied every day

Assuming the designed capacity (15478000litres) is achievable, the quantity will just be enough as each person will access 151L

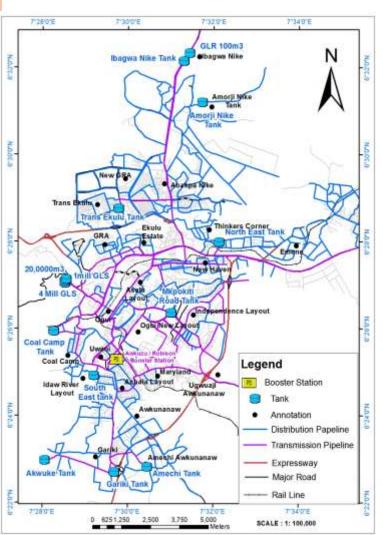
WATER SURVIVAL STRATEGIES IN ENUGU

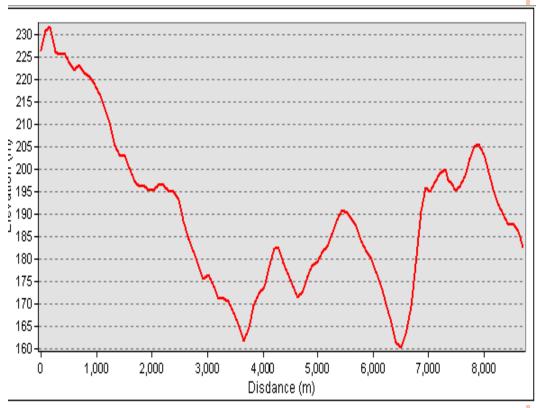
Contaminated Shallow water well

Water vendor



STEPS TO REMEDY THE SITUATION


>WHAT WE HAVE DONE



POSSIBILITY OF WATER FLOW BY GRAVITY

Profile showing Gravity of Water Pipeline From Ibagwa Nike tank to Abakpa Junction (Nike Road).

FIG 2019 Hanoi

Water current measurement at Ajalli

FIG 2019 Hanoi

✓ Bore-hole
depth of 40.0m
to 55.0m

layer	(Ωm)	<i>d</i> (m)	(m)		
First layer (1)	987.60	0.8	153.2	Top Lateritic Clay	
Second layer (2)	63.80	7.2	146.0	Wet Clay	
Third	5.80	51.2	94.8	Wet Gray	

Geoelectric Resistivity Thickness Elevation Lithology

	NI1-1-	FIG 2019 Hanoi						
	Fifth layer (5)	66.60	_	_	Wet un- weathered Shale			
?	Fourth layer (4)	22.10	51.9	42.9	Wet weathered Shale			
	Third layer (3)	5.80	51.2	94.8	Wet Gray Shale			

EXPECTED RESULTS

Map showing a patterned water distribution network with the proposed locations for new water facilities (EPANET)

A seasonal representation of the quantity of water attainable from the existing surface source depicted in a hydrograph

A tabular presentation of the possible maximum and minimum quantity of water obtainable from the existing sources.

A prediction of the locations of aquifer for possible underground water sources within Enugu urban

THANK YOU FOR LISTENING

FIG 2019 Hanoi