Developing Property and Tax Registration Using AI Algorithms:

Automated Mapping of The Municipality of Kendal, Indonesia

The Presenters

Konstantinos Christopoulos

Project Leader, Digireg Netherlands BV Konstantinos.christopoulos@digireg.nl

Jati Pratomo Country Director, Digireg Indonesia Jati.pratomo@digireg.id

1 Background: Challenges in Tax Registrations

2 Methods

3 Result and Future Development

1 Background

Context: Property Tax in Indonesia

Self assessment – no

geometric accuracy and

actual size is questionable

new building or if they are

extended (inc. extra floor)

Not always updated if there is

How be property tax calculated?

(Size of the land * ZNT * tax rate) + (size of building * ZNT * tax rate)

- Self assessment no geometric accuracy and actual size is questionable
- Not really relate to the land parcel ownership → 1 tax object can have various land ownership, vice versa

Aims of the project:

- 1. How to update the tax data without doing all manual building drawing?
- 2. How to integrate the current tax data where it is built based on self assessment and has very low accuracy on the geometry?

ZNT – Land Price Zone

Challenge: Information Extractions

Typical Settlement in Kendal region

- Built-up area is built naturally and often difficult to extract building as a single object.
- Manual building delineations require times and may resulted in a bias on the boundary based on the operators' perceptions

Case Study

Municipality of Kendal, Central Java Province, Indonesia

Land Area: Approx. 1,000 sq. km Population: 1.01 million (Statistic Bureau - 2020) Built-up ratio approx. 10% Image used: Worldview-3 (0.3 m resolution)

Characteristics:

- Predominately by agriculture
- Located nearby the provincial capital (Semarang) Industrial activity has arose in the northern part
- Passed by trans-java highway which create a lot of local economic activity
- Built-up area growth rapidly but the availability of the spatial data cannot cope with its fast changes

2 Methods

Method Research

64 64 128 64 64 input output image . segmentation tile map 212 128 128 256 128 8 256 256 ➡ conv 3x3, ReLU - copy and crop 512 512 512 024 max pool 2x2 ▲ up-conv 2x2 102 ➡ conv 1x1

> Source: U-Net: Convolutional Networks for Biomedical Image Segmentation, 2015 (Ronneberger, O;, Fischer, P;, Brox, T.)

- Mask R-CNN
- U-Net
- GAN

Proposed Methods: GANs

- Generative Adversarial Networks (GANs)
- Yann Le Cun described GANs as "the most interesting idea in the last 10 years in Machine Learning".

Pre-processing

- Select training area
- Digitize '*Building*' / '*Non-Building*' classes

Satellite Image

Label

Pre-processing

- Rasterize training data (image + label tiles)
- Attach a colour table to the one-band TIFF
- Convert to RGB .jpeg file

			1 million			X										12.74	2 A.
tr1000	tr1001	tr1002	tr1003	tr1004	tr1005	tr1006	tr1007	tr1008	tr1000	tr1001	tr1002	tr1003	tr1004	tr1005	tr1006	tr1007	tr1008
tr1009	tr1010	tr1011	tr1012	tr1013	tr1014	tr1015	tr1016	tr1017	tr1009	tr1010	tr1011	tr1012	tr1013	tr1014	tr1015	tr1016	tr1017
tr1018	tr1019	tr1020	tr1021	tr1022	tr1023	tr1024	tr1025	tr1026	tr1018	tr1019	tr1020	tr1021	tr1022	tr1023	tr1024	tr1025	tr1026
		North Contraction					K			2 2		2 2 A					į,
tr1027	tr1028	tr1029	tr1030	tr1031	tr1032	tr1033	tr1034	tr1035	tr1027	tr1028	tr1029	tr1030	tr1031	tr1032	tr1033	tr1034	tr1035
tr1036	tr1037	tr1038	tr1039	tr1040	^e tr1041	tr1042	tr1043	tr1044	tr1036	tr1037	tr1038	tr1039	tr1040	tr1041	tr1042	tr1043	tr1044

Pre-processing & Training

- Resize the satellite image and the label image to 1024 x 1024 pixels tiles
- All the processes are automated by Common geospatial libraries GDAL and OGR
- 50 training sample tiles in total
- Train model 150 epochs used

```
def rasterizeBGT(fn_vec, raster_folder, ref_folder, label_folder):
    i = 0
    files_to_process = glob.glob(os.path.join(raster_folder, '*.tif')
    for data_path in files_to_process:
        ras_ds = gdal.Open(data_path, gdal.GA_ReadOnly)
        vec_ds = ogr.Open(fn_vec)
        lyr = vec_ds.GetLayer()
        geot = ras_ds.GetGeoTransform()
        sr = ras_ds.GetProjection()
```

ref =ref_folder + '/ref' + str(i) + '.tif'
drv_tiff = gdal.GetDriverByName("GTiff")
chn_ras_ds = drv_tiff.Create(ref, ras_ds.RasterXSize, ras_ds.
chn_ras_ds.SetGeoTransform(geot)
chn_ras_ds.SetProjection(sr)

gdal.RasterizeLayer(chn_ras_ds, [1], lyr, options=['ATTRIBUTE chn_ras_ds.GetRasterBand(1).SetNoDataValue(0) chn ras_ds = None

original_ds = gdal.Open(src_path, 0)
sr = original_ds.GetProjection()
gt = original_ds.GetGeoTransform()
del original_ds

def rasterizeBGT(fn_vec, raster_folder, ref_folder, label_folder): i = 0 files_to_process = glob.glob(os.path.join(raster_folder, '*.tif') for data_path in files_to_process: ras_ds = gdal.Open(data_path, gdal.GA_ReadOnly) vec_ds = ogr.Open(fn_vec) lyr = vec_ds.GetLayer() geot = ras_ds.GetEvor() sr = ras_ds.GetForjection() ref =ref_folder + '/ref' + str(i) + '.tif' drv_tiff = gdal.GetDriverByName("GTiff") chn_ras_ds = drv_tiff.Create(ref, ras_ds.RasterXSize, ras_ds. chn_ras_ds.SetGeoTransform(geot)

chn ras ds.SetProjection(sr)

gdal.RasterizeLayer(chn_ras_ds, [1], lyr, options=['ATTRIBUTE chn_ras_ds.GetRasterBand(1).SetNoDataValue(0) chn_ras_ds = None

3

Result & Future Development

Preliminary Output

Classification of <u>same</u> area

Reference

GANs output

Preliminary Output

• Classification of *different* area

Further Steps

- Accuracy assessment
- Data post-processing (cleaning, correct geometry)
- Multi-signalering
- Quality control
- Implement to Taxation Process

Conclusions

- Tax objects need to be updated annually; nonetheless manual detection is costly.
- GANs performs very well in a region such as Kendal. Using more training data, we expect to increase the accuracy and better building shape.
- GANs is 2x cheaper and 4x faster than manual detection, which can improve budget efficiency as well as tax object data collection.
- By using GANS, Municipality can save approx. 30,000 EUR/year cost for updating the data.
 - Having an updated data may increase up to 26% of property tax in our study area.

Netherlands

Schoolstraat 7 5961 EE Horst T +31 (0)77 - 208 6012 Email: info@digireg.nl https://digireg.nl

Indonesia

JI RS Fatmawati 3A Jakarta 12420 T +62 (0)21 - 2782 9000 Email: <u>info@digireg.id</u> https://digireg.id

Digireg

Kenya

11 Lenana Road P.O. Box 28896-00100, Nairobi T +254 (0) 703 779 751 Email: <u>information@digireg.co.ke</u>