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ABSTRACT

This paper discusses the use of minimum norm (L1), least squares (L2), Kalman filtering, and
time-series analysis (Box-Jenkins models) in extracting the true signals in deformation
measurement and analysis, especially in the presence of outlying observations and
environmental disturbances due to wind, rain and temperature changes.

Minimum norm, or the L1 method, and the least squares, or L2 method, with robust
estimation techniques are the traditional methods used in pre-deformation analysis. The
inherent weakness in these two traditional methods in dealing with continuous deformation
measurement using motorized total station (also known as surveying robot) is the non-
consideration of the correlation in the data, which is basically a time series.

The autoregressive and autocorrelation nature of the continuous monitoring measurements
could be explored using the Box-Jenkins time series models. Filtering and prediction done
using the sophisticated Autoregressive Integrated Moving Average (ARIMA) techniques or
its subset is however not suited for automated real-time deformation analysis.

This study focused on the use of Kalman filter in filtering out outlying data and noisy data.
The known systematic effect of pillar rotation, scale change and change in refraction as well
as the horizontal directions, slope distances and zenith angles were modeled as the state
vector in a forward Kalman filtering and backward smoothing. It is proven in this study that it
is feasible to implement an automated real-time Kalman filter in deformation analysis. Test
carried out on a 'stable' building at Nanyang Technological University, Singapore, and
processed using Kalman filter confirm the 'movement' of the building of less than 1 mm.
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1. INTRODUCTION

This paper discusses the use of the minumum norm (L1), least squares (L2), Kalman filtering
and time series analysis in extracting the true signals in deformation measurement and
analysis.

The L1, L2 and time series analysis will be briefly covered before the deliberation on Kalman
filtering which was found to be superior in eliminating outliers whether they are due to
erroneous observations or disturbances to the instrument arising from adverse environmental
conditions - the wind and the rain and the heat.

Data were gathered from a test site setup in Nanyang Technological University, Singapore,
using both Motorised Electronic Total Station, also known as Surveying Robot, and Global
Positioning System (GPS). Data from GPS were processed using a commercial software and
served as an independent results for comparison purpose.

2. THE L1 METHOD

Caspary and Borutta (1987) adopted Iterative Reweighted Least Squares (IRLS) in
implementing the robust method that minimises the sum of the absolute values of the
residuals. The L1 method that implements the robust method is not the same as IRLS
(Harvey, 1993). The procedure of the L1 method is to set up one equation per observation as
in parametric least squares. If there are u unknown parameters, a simple approach is to try
every possible combination of u equations and select the one with the smallest sum of the
absolute residuals. This approach is very inefficient. A better method is to use Dantzig’s
Simplex algorithm, the standard linear programming algorithm (Branham, 1990). There are
other developments based on the simplex algorithm, such as those of Barrodale and Roberts
(1974) and Branham (1990).

Gass (1985) states the general linear programming problem which is to find a vector x (x1,
x2,…, xn) which minimizes the linear form Cx (the objective function) subject to the linear
constraints Ax=b and xj≥0 (j=1,2,…, n). A is a m x n constant matrix, b and x are a m x 1
constant vectors with m < n.

One feature of the L1 method is that u of the n equations will be satisfied exactly giving zero
residuals for the corresponding observations. Many of the (n-u) observation equations are
virtually not used in the solution of the u parameters. This is one of the reasons Gauss
preferred least squares to L1 method (Brahman, 1990).

Harvey (1993) suggests a simple modification of the L1 method to account of the different
units and varying precision in survey observations. The normal L1 method solves
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Ax = b                                      (1)

so that the sum of the absolute values of the residuals (v) is a minimum. A is the coefficient
matrix, x is a vector of parameters to be solved and b is a vector representing the difference
between observations and the values calculated from estimates of the parameters.

The modified methods solves
P1/2Ax = P1/2b         (2)

so that 
v
s

�  is a minimum, where P1/2 is the weight matrix with inverse of the standard

deviation as its diagonal elements.

Marshall and Bethel (1996) illustrated the application of the L1 method to adjustment of
horizontal networks in the form of v + Ax = b. Weight matrix P1/2 is applied to each to each
equation.

Further generalisation was made in this study to solve for,

P1/2Ax + P1/2Cv = P1/2b                (3)

where C is design matrix with respective to the observations and P1/2Cv is minimized in the
linear programming. In this study, C is a identity matrix.

As the Simplex algorithm deals only with positive numbers, each residual v and parameter x
are respresented by two positive numbers (Marshall and Bethel, 1996), i.e.

vi = vi1 - vi2 and xi = xi1 - xi2                                     (4)

The gross errors present in the observations will have attracted larger residuals in the L1
method. The standardised residual will thus have a magnitude greater than 3σ. The arbitrary
magnitude of 5σ as proposed by Sprent (1998) was used in this study.

LINDO, a callable library of the Lindo System Inc. for optimisation, was used in a Visual
Basic program to calculate the parameters with the minimum norm of the residuals.

3. THE L2 METHOD

The same coefficient matrices  A, C and  b used in the L1 method could be used in the L2
(least squares) method. In constrast to L1 method, the gross errors present in one observation
will smear other good observations. Robust estimation in deformation analysis is thus
essential to provide accurate displacement vectors since least squares adjustments are easily
influenced by a single gross error. Conventional robust estimations, for instance using the M-
estimator, the Least Absolute Sum method or the Danish method, attempt to detect the gross
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errors one at a time and reassign weights to the suspected outliers in an iterative least squares
adjustment (Caspary and Borutta, 1987) .

Caspary and Robutta (1987) illustrated that the Danish Method is most robust with respect to
outlying observations, followed by the LAS estimation. Huber’s M-estimation is a
compromise between the extremely robust Danish Method and the non-robust LS method.

The following weight functions are used in the Danish Method:

wv+1 = wvf(δv), v = 1,2,…                (5)
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With these weights the LS computation is repeated, leading to new residuals and by virtue of
Eq. (6) to new weights. The process of re-weighting and adjustment is repeated until
convergence is achieved. The weights of outlying observation become small, thus being of
minor influence on the parameter estimation. In this sense, the method can be classified as a
robust one in respect of gross residuals. The value of c adopted in this study is based on the
tau-statistics, which in this case has a value of close to 3.

Harvey (1993) as well as Marshall and Bethel (1996) suggested using L1 method to detect
outliers and then using least squares (the L2 method) on the ‘cleaned’ data.

4. TIME SERIES ANALYSIS

A series of successive and regularly taken measurements is called a time series. This is
applicable to measurements taken using survey robots in monitoring survey. Each epoch of
measurement data, however, is often processed in commercial software as independent set of
data. The special feature of time-series data is the fact that successive observations are
usually not independent and that the analysis must take into account the time order of the
observations. When successive observations are dependent, future values may be predicted
from the past observation. If a time series can be predicted exactly, it is said to be
deterministic. But most time series are stochastic in that the future values are only partly
determined by past values, so that exact predictions are impossible and must be replaced by
the idea that future values have a probability conditioned by knowledge of past values.

Program packages are now available that can handle time series using various models.
AutoRegressive Integrated Moving Average (ARIMA) and the sub-models ARMA, AR and
MA, due to the book by Box and Jenkins (1970), are the popular models to analyse the
characteristics of a time series.
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Detection of outlying observations in a time series is not easy (Alba and Zartman, 1980).
Spuriosity may be due to innovation or additive effects. Innovation spuriosity is the error or
random shock that affects the model at each time period; it stays in the system and affects
subsequent observations. Additive effect spuriosity does not affect observations after the
outlier. Fox (1972) first studied the detection of outliers in time series. He considered the
problem of detecting the spurious observations in time series in the context of a p-th order
autoregressive model. He derived a likelihood ratio test assuming that a single specific
observation is spurious. Other references on this topic include Abraham and Box (1979),
Martin (1980), Chang and Tiao (1983), Chang, Tiao and Chen (1988).

Various researchers studied the analysis of time series in great depth. For instasnce, instance
time series regression analysis postulates a structural equation model adn tests it using time
series data (Ostrom, 1990); application of bootstrapping to time series data (Efron and
Tibshirani, 1986); Grey Model in time series (Chen and Tang, 1993). The analysis is quite
complex even for an univariate ARIMA model. The application of the time series analysis in
a multivariate ARIMA model would have been too tedious, even without additive or
innovation outliers. Furthermore, the human intervention required for the identification of a
suitable model makes the analysis unsuitable for real-time applications in deformation
analysis. The use of Grey Model in time series analysis, though simple to apply, is not a
robust method. The data series derived by summation will propagate the outlier that is present
in the original time series data. The next section will look into the Kalman Filter, a different
algorithm used in filtering, smoothing and predicting time series data.

5. KALMAN FILTER

“Filtering, smoothing and prediction techniques are used for problems in which the
parameters being estimated by least squares process vary with time” (Cross, 1994). If ti is the
present time and tj is the time at which we want to estimate the position of a dynamic or
moving platform, we are filtering if ti = tj; smoothing if ti > tj and predicting if ti < tj. The
methods are also valid for situations in which the parameters have temporal variations even
though there may be no movement. The Kalman Filter, first derived by Kalman (1960) for
use in electrical control systems, is a widely used method for filtering, smoothing and
prediction. In principle, it is feasible to apply the Kalman filtering technique to deformation
monitoring data that are subject to temporal variation due to changes in temperature, noises
due to wind and rain and other shocks.

Krakiswsky (1975), Cross (1994), Strang and Borre (1997) and Han (1998) had shown that
the Kalman Filter can be derived from the standard least squares adjustment. In fact recursive
least squares estimation could be re-formulated as a Kalman filtering technique for non-
dynamic or static positioning.

Strang and Borre (1997) highlighted four key points of the Kalman filter, namely that the
process is recursive, that there are many forms of the update formula, that the error
covariance matrix P = 

�x� must also be updated and that the Kalman Filter suits dynamic
problems.
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5.1  Dynamic Updates

The Kalman Filter suits dynamic problems where, in the Kalman notation, a state vector xk
(e.g. the rotation of survey pillar) at epoch k is not the same as the state vector xk-1 at epoch k-
1. The state is changing (the pillar is rotating). If we assume a linear equation for a dynamic
change of state with its own error εεεεk and with new measurements bk and the errors ek in these
measurements, we get

xk = Fk-1xk-1 + εεεεk                (7)
and

bk = Akxk + ek                                                (8)

The state of the system is modelled by the state vector xk This vector changes with time. The
known matrix Fk-1 in Eq. (8) is called the state transition matrix. Equation (7) is the state
equation for the dynamic process. The εεεεk in the state equation is the so-called 'system noise'
which represents the unknown error in the state model. This unknown error must be
estimated to carry out the Kalman Filtering process.

The update could be expressed in two stages, namely by a prediction using Eq. (9) and by a
filtering using Eq. (10):

Prediction: � �x F xk|k k k |k− − − −=1 1 1 1                                (9)
Filtering: � � � )x x K (b A xk|k k|k k k k k|k= + −− −1 1                                    (10)

The update of the error covariance matrix P, that is required to compute the gain matrix, also
comes in two stages:

Prediction: Pk|k-1 = Fk-1Pk-1|k-1Fk-1
t + ����ε,k                                    (11)

Filtering: Pk|k = (I-KkAk)Pk|k-1                                            (12)

The gain matrix Kk required in Eqs. (10) and (12) is shown in Eq. (13) :

( )K P A A P Ak k|k 1 k
t

k k|k 1 k
t

e,k

1
= +�− −

−
             (13)

5.2 Smoothing

The forward process of filtering produces � |xk k is the best estimate of the state vector up to
epoch k. Smoothing produces a better estimate � |xk N  for the state vector at epoch k by using
the observations up to the latter time N. The smoothed estimate of xk is always better than the
filtered estimate. There are three types of smoothers – fixed interval, fixed-point and fixed
lag. The last two types may be used in real time. The fixed-interval smoothing, only for post-
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processing, seeks � |x k N for k = 0 to N, while the fixed-point smoothing seeks � |xk j for a fixed k
and j = k+1, K+2, etc. The fixed-lag smoothing seeks �xk n−  for a fixed lag n. The fixed-lag
smoother estimates the system state at epoch k-n, given the measurements up to epoch k
(usually the current epoch). The memory requirements for fixed-lag smoothers increase with
n, because the intermediate Kalman Filter values must be saved. The expression is also rather
complex. In consequence, it is not an attractive option for smoothing the estimates.

For fixed-interval smoothing, after filtering forward from Epochs 0 to N, the results � |xk k−1 ,
� |xk k , �k|k-1 and �k|k are kept. Filtering backward from Epoch N to 0 is carried out with the
recursive formulae (starting from k=N-1):

� � ( � � )| | | |x x A x xk N k k k k N k k= + −+ +1 1                      (14)

where Ak is the smoothing gain and

A Fk k k k
t

k k= �� +
−

| |1
1                      (15)

for
k = N-1, N-2, … , 0

The algorithm presented is due to Rauch, Tung and Striebel and is referred to as the RTS
algorithm by Brown and Hwang (1997).

Brown and Hwang (1997) also proposed and illustrated the use of the RTS algorithm for
fixed-interval smoothing in fixed-lag smoothing by first filtering up to the current
measurement and then sweeping back a fixed number of steps with the RTS algorithm. If the
number of backward steps is small, it is a simple and effective way of doing fixed-lag
smoothing. Thus, it is possible to use fixed-interval smoothing in real-time smoothing in
deformation measurement and this approach is adopted in this study with N=3, i.e. filtered
backwards by 3 epochs.

6. NTU TEST SITE

The layout of the Test Site is depicted in Figure 1. The Surveying Robot Station (Fig. 2) and
the GPS Reference Station (Fig. 3) are situated at the rooftop of Block N1 (about 35 m above
ground level) of NTU. G2 to G5 in Figure 1 denote the monitoring points comprising the
GPS antenna and the prism target mounted on a customised bracket (Fig. 4). G2, G3, G4 and
G5, all installed at the rooftop, are about 120 m, 145 m, 110 m and 95 m, respectively, from
the Surveying Robot Station and the GPS Reference Station. G2 and G3 are about 5 m lower
than the two reference stations whilst G4 and G5 are at the same height with the reference
stations. Block N1 and N2 are supposedly stable buildings.
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G3

G4
Blk N2

G5

N

G2

Survey Robot
Station
and GPS
Reference
Station

Blk N1

Figure 1. Layout of the Surveying Robot Station, GPS Reference Station and
monitoring points G2 to G5

Figure 2. Surveying Robot Station situated
at the rooftop of Block N1, NTU

Figure 3. GPS Reference Station
at the rooftop of Block N1, NTU

Figure 4. Wall-mounted bracket
with GPS antenna and prism
target
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7. OBSERVATION AND RESULTS

7.1 Surveying Robot Observations

The surveying robot observations using a Zeiss S10 began on 03.00h (GMT) 28th July 2001
and ended on 22.00h (GMT) 14 August 2001. 428 sets of observations were acquired and
taken at hourly interval to the prism targets at the monitoring points G2 to G4. Temperature
and pressure readings were also taken by the Zeiss S10 besides the horizontal directions,
slope angles and slope distances.

7.1.1  Results of L1, L2 and Kalman Filtering

Changes with time in the orientation, due to pillar rotation, scale correction and refraction,
due to changes in temperature, was found evident in an earlier study (Tor, 1999). The
orientation (z-rotation or kappa), scale correction and refraction correction were solved as
unknown parameters in the L1 and L2 solutions. For the Kalman filtering, the state vectors
include the three parameters, their first and second order differentials, and the adjusted
horizontal directions, zenith angles and slope distances. The system noises of the z-rotation,
scale correction and refraction correction are function of their third differentials (i.e. the
uncertainties in the respective accelerations). The adjusted observations are also subjected to
unknown system noises.

Figure 5 shows the results of the z-rotation, scale correction and refraction correction,
respectively. The red line shows the smoothed results of the Kalman filtering and the blue
and green lines show the results of the L1 and L2 solutions, respectively.

The application of the corrections obtained in the L1 and L2 solutions to the observations
gave the adjusted X-, Y- and Z-coordinates. For the Kalman filtering, the adjusted
observations were obtained as the smoothed state vectors together with the corrections to the
observations. Figure 6 shows the X, Y and Z-coordinates of Point G3 computed using the
three methods. Again the red lines represent the Kalman results, blue for the L1 and green for
the L2 results. The observed coordinates are shown in grey.

7.1.2  Results of Time Series Analysis

Raw observations (shown as blue lines), time-series filtered and predicted observations
(shown as red lines) of G3 are depicted in Figure 7. The observations in Figure 7 were found
to be a time series of the sophisticated ARIMA (Autoregressive Integrated Moving Average)
model (also known as "Box-Jenkins" model) with both 1st order autoregressive and 1st order
moving average with periodicity of 24 hours. The filtered results fit well with the
observations. The predicted results for 6 days also exhibit the cyclical (periodic) nature of the
time series
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Figure 5. L1, L2 and Kalman filtered solutions of z-rotation, scale correction and
refraction  correction as shown in blue, green and red, respectively
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Figure 6. X, Y and Z-coordinates of G3 computed using L1(blue), L2(green), Kalman
filtered(red) and the observed coordinates (grey)
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Figure 7. Time Series filtered and predicted X, Y and Z-coordinates (in red) and
the raw X, Y and Z-coordinates (in blue) of Point G3
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7.2 GPS Observations

Two sets of GPS observations were acquired, each with approximately 48 hours. The first
began on 08.00h (GMT) 3rd August 2001 and ended on 07.15h (GMT) 5th August 2001. The
second set began on 06.00h (GMT) 13 August 2001 and ended on 08.00h (GMT) 15 August
2001. The sampling rate of the GPS observations is fifteen seconds, i.e. one reading every 15
seconds

The changes in the easting(X), northing(Y) and height(Z) coordinates of the GPS antenna at
G3 computed at hourly interval are shown in Figure 8. The height shown is the WGS84
ellipsoidal height. Due to the small extent of the test site, the changes in the ellipsoidal
height, for practical purpose, is taken as the same as the changes in the orthometric height.
The horizontal line in each graph indicates the mean of the changes in the respective
coordinate. The numerical value of the mean and the root mean square (RMS) of the results
are shown as well. The results were processed using the Motion Tracker module of the
Trimble GeoGenious program.

Figure 8. Changes in the northing, easting and ellipsoidal height of monitoring point G3 at
Block N2 computed at hourly interval with reference to the GPS reference station at Block N1.
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8. ANALYSIS OF RESULTS

As shown in Figure 5, the results of the L1 solution using the Simplex algorithm and L2
solution with Danish method of outlier detection are found to be similar in magnitude. The
Kalman filtering and smoothing solution was found to be able to smooth the sharp peak,
especially in the refraction corrections which are strongly dependent on the changes in the
zenith angles. It is thus an effective low pass filter which removes the high frequency signals
from the data. The effect of wind is the likely cause of the noisy zenith angles.

The adjusted X, Y and Z-coordinates as depicted in Figure 6, further validate the advantage
of using Kalman filtering and smoothing to extract the true signal of the state of deformation,
in this case of a supposedly stable building – Block N2 (Figure 1). The changes in the three-
dimensional coordinates of G3, as well as G2 and G4, are 1 mm or less! The diurnal changes
in the coordinates, due to the pillar rotations, changes in scale and changes in refraction, all
related to the changes in the temperature (Figure 9), are successfully removed with a 3-step
fixed-interval smoothing which is a good approximation for a fixed-lag smoothing. Figure 10
shows the Kalman smoothed (in red) and the observed (in blue) horizontal directions, zenith
angles and slope distances. It is noted that the Kalman-smoothed values start to converge
after 24 epochs (1 day) of  observation.

The constant mean level of the GPS results as shown in Figure 8 is a good independent
verification of the stability of the Block N1. The fluctuations in the planimetric position of
about 7 mm and height from the mean levels of about 15 mm are substantially larger than that
of the surveying robot. The two days of processed results exhibit diurnal repetitions in the
changes in the coordinates and this phenomena could be attributed to the multipath effect
suffered by the GPS signals.

20

25

30

35

40

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 415

Epoch

Te
m

pe
ra

tu
re

 (d
eg

. C
)

Figure 9. Changes in temperature (the sudden dips in the graph – e.g. epochs 51, 210,
265, 336 - indicate cooling of temperaute due to rainfall)
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Figure 10. Kalman smoothed (in red) and the observed horizontal direction, slope
distance and zenith angle of point G3

-10

-8

-6

-4

-2

0

2

4

6

8

10

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 415

Epoch

C
ha

ng
es

 in
 th

e 
Sm

oo
th

ed
 a

nd
 O

bs
er

ve
d 

H
or

iz
on

ta
l 

D
ire

ct
io

n 
("

)

-2

-1

0

1

2

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 415

Epoch

C
ha

ng
es

 in
 th

e 
Sm

oo
th

ed
 a

nd
 O

bs
er

ve
d 

Sl
op

e 
D

is
ta

nc
e 

(m
m

)

-20

-15

-10

-5

0

5

10

15

20

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 415

Epoch

C
ha

ng
e 

in
 S

m
oo

th
ed

 a
nd

 O
bs

er
ve

d 
ze

ni
th

 a
ng

le
 ("

)



TS6.5 Deformation Measurement and Analysis III
Yam Khoon Tor
L1, L2, Kalman Filter and Time Series Anlysis in Deformation Analysis

FIG XXII International Congress
Washington, D.C. USA, April 19-26 2002

16/18

9. CONCLUSION

Using Kalman filtering and smoothing,  changes in the X, Y and Z-coordinates of less than 1
mm had been obtained for a supposedly stable building in the NTU Test Site. In this study,
Kalman filtering is proven feasible to be implemented in real-time to eliminate the high
frequency noise due to wind and rain, diurnal changes in pillar rotation, changes in scale and
changes in the refraction mainly due to the the changes in temperature. System noises were
estimated to initiate the Kalman filtering and smoothing. Further testing and study are
required to have a better understanding of the use of Kalman filtering and smoothing for
deformation analysis.
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